Kristallstruktur
Die Struktur von Kristallen wird durch die beiden Begriffe Gitter und Basis beschrieben.
Gitter
Das Kristallgitter, auch Punktgitter genannt, ist eine dreidimensionale Anordnung von (mathematischen) Punkten. Untereinheit des Gitters ist die sogenannte Elementarzelle. Sie enthält alle Informationen, die zum Beschreiben des Kristalls notwendig sind. Diese Elementarzellen werden durch Translationssymmetrie zu einem dreidimensionalen Netz erweitert. Im dreidimensionalen Raum beschreiben die 14 Bravais-Gitter alle Möglichkeiten der Translationssymmetrie. Von jedem Gitterpunkt der Zelle muss der (unendlich ausgedehnte) Kristall genau gleich aussehen, egal in welche Richtung man sieht. Weil das Kristallgitter nur aus Punkten aufgebaut ist, ist es immer zentrosymmetrisch.
Basis
Die Basis einer Kristallstruktur besteht aus Atomen, Ionen oder Molekülen. Sie stellt die kleinste Gruppe dieser Elemente dar, die sich periodisch im dreidimensionalen Raum deckungsgleich wiederholt. Die Basis besteht mindestens aus einem Atom, kann aber auch einige tausend Atome umfassen (Proteinkristalle). Bei Natriumchlorid besteht die Basis zum Beispiel aus einem Na+- und einem Cl−-Ion.
Jeder Basis wird dann ein Bezugspunkt zugewiesen (in der Illustration die linke obere Ecke des Rechtecks). Diese Bezugspunkte bilden das Kristallgitter, wenn man nur noch die Punkte betrachtet (im Bild Gitter genannt). Sie spannen die sogenannten Grundvektoren auf, welche von einem Gitterpunkt zu seinen Nachbarn weisen (in 2D: zwei, 3D: drei Stück). Das von diesen Grundvektoren aufgespannte Parallelepiped heißt Einheits- oder Elementarzelle. Diese hat an ihren Ecken demnach je einen Gitterpunkt, muss aber nicht zwischen direkt benachbarten Punkten gezogen werden, sondern kann beliebig groß gewählt werden.
In der Literatur wird oft vom Strukturtyp oder von der Gitterstruktur gesprochen. Man spricht dann vom Natriumchloridgitter, Cäsiumchloridgitter usw.. Weil aber das Kristallgitter nur Punkte enthält und keine Ionen, ist diese Ausdrucksweise irreführend. Präziser heißt es Natriumchlorid-, Cäsiumchlorid-, Diamant- oder auch Zinkblende-Struktur. Diese Strukturen werden für die Typisierung einer Reihe anderer Verbindungen genutzt, die in Bezug auf die Kristallstruktur mit den Beispielen übereinstimmen. Man kann also auch die Begriffe Natriumchloridstrukturtyp, Cäsiumchloridstrukturtyp usw. verwenden.
Polymorphie
Chemisch identische Feststoffe können gleichwohl in verschiedenen Kristallmodifikationen auftreten, die sich in ihren physikalischen Eigenschaften unterscheiden, beispielsweise unterschiedliche Schmelzpunkte besitzen. Das nennt man Polymorphie. Zur Untersuchung der Polymorphie, die in der Pharmazie zur Charakterisierung einiger Arzneistoffe eine besondere Bedeutung besitzt, ist die Differential-Thermoanalyse (DTA) eine häufig eingesetzte Methode. Die DTA erlaubt, dieses komplexe Phänomen zu erkennen und zu interpretieren, insbesondere wenn die Analysenprobe eine Mischung mehrerer Kristallmodifikationen ist.
Periodensystem der Elemente
Die Strukturen für metallische Elemente bei Standardbedingungen sind farbcodiert dargestellt mit Quecksilber als einziger Ausnahme, bei der die Tieftemperaturform für das sonst flüssige Element angegeben ist. Nichtmetalle wie Edelgase sind bei Standardbedingungen nicht-kristallin, während andere wie Kohlenstoff verschiedene Allotrope haben können und daher nicht aufgezählt werden.
Gruppe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Periode | |||||||||||||||||||
1 | H |
He | |||||||||||||||||
2 | Li (bcc) |
Be (hcp) |
B |
C |
N |
O |
F |
Ne | |||||||||||
3 | Na (bcc) |
Mg (hcp) |
Al (fcc) |
Si |
P |
S |
Cl |
Ar | |||||||||||
4 | K (bcc) |
Ca (fcc) |
Sc (hcp) |
Ti (hcp) |
V (bcc) |
Cr (bcc) |
Mn |
Fe (bcc) |
Co (hcp) |
Ni (fcc) |
Cu (fcc) |
Zn |
Ga |
Ge |
As |
Se |
Br |
Kr | |
5 | Rb (bcc) |
Sr (fcc) |
Y (hcp) |
Zr (hcp) |
Nb (bcc) |
Mo (bcc) |
Tc (hcp) |
Ru (hcp) |
Rh (fcc) |
Pd (fcc) |
Ag (fcc) |
Cd |
In |
Sn |
Sb |
Te |
I |
Xe | |
6 | Cs (bcc) |
Ba (bcc) |
La* |
Hf (hcp) |
Ta (bcc) |
W (bcc) |
Re (hcp) |
Os (hcp) |
Ir (fcc) |
Pt (fcc) |
Au (fcc) |
Hg |
Tl (hcp) |
Pb (fcc) |
Bi |
Po |
At |
Rn | |
7 | Fr |
Ra (bcc) |
Ac** |
Rf |
Db |
Sg |
Bh |
Hs |
Mt |
Ds |
Rg |
Cn |
Uut |
Fl |
Uup |
Lv |
Uus |
Uuo | |
* |
La |
Ce (fcc) |
Pr |
Nd |
Pm (hcp) |
Sm |
Eu (bcc) |
Gd (hcp) |
Tb (hcp) |
Dy (hcp) |
Ho (hcp) |
Er (hcp) |
Tm (hcp) |
Yb (fcc) |
Lu (hcp) | ||||
** |
Ac (fcc) |
Th (fcc) |
Pa |
U |
Np |
Pu |
Am (hcp) |
Cm (hcp) |
Bk |
Cf |
Es |
Fm |
Md |
No |
Lr | ||||
Kubisch raumzentriertes Gitter (bcc) | Hexagonal dichteste Kugelpackung (hcp) | Kubisch flächenzentriertes Gitter (fcc) | ungewöhnlich | unbekannt | Nichtmetall |
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 03.02. 2020