Thorium
Sicherheitshinweise | |||||||
---|---|---|---|---|---|---|---|
| |||||||
weitere Sicherheitshinweise | |||||||
Radioaktivität | |||||||
Radioaktives Element |
Thorium (nach dem germanischen Gott Thor) ist ein chemisches Element mit dem Elementsymbol Th und der Ordnungszahl 90. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block).
Geschichte
Hans Morten Thrane Esmark fand 1828 auf der norwegischen Insel Løvøya (Løvø), in der Nähe der Ortschaft Brevik ein schwarzes Mineral. Esmark konnte diese Probe keinem bisher bekannten Mineral zuordnen und sandte die Probe, in der er eine unbekannte Substanz vermutete, an den schwedischen Chemiker Jöns Jakob Berzelius. Der stellte dann im gleichen Jahr fest, dass dieses Mineral (Thorit) zu nahezu 60 % aus einem neuen Oxid (Thoriumdioxid) bestand. Das dem Oxid zugrunde liegende Metall benannte er nach dem Gott Thor Thorium. Die Entdeckung des neuen Minerals veröffentlichte Berzelius 1829.
1898 entdeckten Marie Curie und Gerhard Schmidt (1865 - 1949) zeitgleich die Radioaktivität von Thorium.
1914 gelang Lely und Hamburger erstmals die Reindarstellung des Metalls.
Vorkommen
Thoriumverbindungen finden sich häufig in Monazitsanden ((Ce,La,Nd,Th)[PO4], 4 — 12 % Thoriumdioxid ThO2) und in dem mit Zirkon isomorphen Mineral Thorit (ThSiO4) sowie in Thorianit ((Th,U)O2). Auch Titanit und Zirkon selbst enthalten geringere Mengen Thorium.
In der Erdkruste kommt Thorium in Mengen zwischen 7 und 13 mg Thorium pro kg vor; damit ist es etwa doppelt bis dreimal so häufig wie Uran. Generell ist das Element aufgrund seines lithophilen Charakters in geringen Mengen in fast allen silikatischen Gesteinen vertreten.
Die weltweit jährlich für die Stromerzeugung verwendete Kohle enthält unter anderem etwa 10.000 t Uran und 25.000 t Thorium, die entweder in die Umwelt gelangen oder sich in Kraftwerksasche und Filterstäuben anreichern.
Das radioaktive Metall wird in Australien, Norwegen, Sri Lanka, Kanada, USA, Indien, Finland
und Brasilien abgebaut. Stille
Vorkommen von ca. 800.000 Tonnen sind in der Türkei bekannt, überwiegend in der
Provinz Eskişehir.
Die Knochen eines Menschen enthalten zwischen 0,002 und 0,012 mg Thorium pro kg
Knochenmasse. Täglich werden durch Nahrung und Wasser ca. 0,05 bis 3 μg
aufgenommen.
Eigenschaften | |
---|---|
Allgemein | |
Name, Symbol, Ordnungszahl | Thorium, Th, 90 |
Serie | Actinoide |
Gruppe, Periode, Block | Ac, 7, f |
Aussehen | silbrig weiß |
CAS-Nummer | 7440-29-1 |
Massenanteil an der Erdhülle | 11 ppm |
Physikalisch | |
Aggregatzustand | fest |
Modifikationen | 2 |
Kristallstruktur | kubisch flächenzentriert |
Dichte | 11,724 g/cm3 |
Mohshärte | 3,0 |
Magnetismus | paramagnetisch (χ = 8,4 · 10-5) |
Schmelzpunkt | 2028 K (1755 °C) |
Siedepunkt | 5061 K (4788 °C) |
Molares Volumen | 19,80 · 10-6 m3/mol |
Verdampfungswärme | 530 kJ/mol |
Schmelzwärme | 16 kJ/mol |
Schallgeschwindigkeit | 2490 m/s bei 293,15 K |
Elektrische Leitfähigkeit | 6,67 · 106 A/(V · m) |
Wärmeleitfähigkeit | 54 W/(m · K) |
Chemisch | |
Oxidationszustände | 4,3,2 |
Elektronegativität | 1,3 (Pauling-Skala) |
Eigenschaften
Reines Thorium ist ein silberweißes Metall, das an der Luft bei Raumtemperatur stabil ist und seinen Glanz für einige Monate behält. Ist es mit seinem Oxid verschmutzt, läuft es langsam an der Luft an und wird grau und schließlich schwarz. Die physikalischen Eigenschaften von Thorium hängen stark von seiner Verschmutzung durch sein Oxid ab. Viele "reine" Sorten enthalten oft einige Promille Thoriumdioxid. Es ist aber auch hochreines Thorium verfügbar. Reines Thorium ist weich, sehr dehnbar, kann kalt gewalzt und gezogen werden. Thorium ist polymorph mit 2 bekannten Modifikationen. Bei über 1.400 Grad Celsius wandelt es sich von einer kubisch flächenzentrierten zu einer kubisch raumzentrierten Struktur um. Von Wasser wird Thorium nur sehr langsam angegriffen, es löst sich auch in den meisten verdünnten Säuren (Fluss-, Salpeter, Schwefelsäure) und in konzentrierter Salz- und Phosphorsäure nur langsam. In rauchender Salpetersäure und Königswasser löst es sich gut. Pulverförmiges Thorium oder Späne sind an der Luft sehr leicht beim Erhitzen selbstentzündlich. Thorium verbrennt an der Luft mit weißer, hell leuchtender Flamme.
Darstellung
Thorium wird aus Thoriumoxid gewonnen. Dazu wird Thoriumoxid mit Calcium in Form von Pulver oder Spänen im Ofen unter Argon-Atmosphäre oder im Vakuumofen reduziert; Reduktion mit Wasserstoff (wie bei anderen Metallen üblich) ist nicht möglich, da sich statt dessen Hydride bilden. Anschließend wird der Kuchen in Flusssäure gewaschen und das Thoriummetall abfiltriert.
Isotope und Zerfallsreihe
Thorium ist ein Reinelement. In der Natur kommt fast nur das Isotop mit der längsten Halbwertszeit 232Th vor. Thorium trägt durch seinen Zerfall zur Erdwärme bei. Weil 232Th lange für den Anfang einer der natürlich vorkommenden Zerfallsreihen gehalten wurde, ist diese nach ihm benannt worden. Die Zerfallsprodukte des natürlich vorkommenden Thoriums-232 sind in folgender Reihenfolge:
- Radium 228Ra (Halbwertszeit 5,75 a),
- Actinium 228Ac (6,15 h),
- Thorium 228Th (1,9116 a),
- Radium 224Ra (3,66 d),
- Radon 220Rn (55,6 s),
- Polonium 216Po (0,145 s),
- Blei 212Pb (10,6 h),
- Bismut 212Bi (60,55 min),
- daraus zu 64 % Polonium 212Po (3·10-7 s) und
- zu 36% Thallium 208Tl (3,053 min),
- aus beiden stabiles Blei 208Pb.
Verwendung
Glühlicht
Thorium wurde in Form seines Oxides für die Herstellung von Glühstrümpfen verwendet. Diese Glühstrümpfe stellte man her, indem man Stoffgewebe mit einer Lösung aus 99% Thoriumnitrat und 1% Cernitrat tränkte und dann anzündete. In der Hitze zerfiel das Thoriumnitrat in Thoriumoxid und nitrose Gase. Hierbei blieb eine zerbrechliche Struktur zurück, die in der Gasflamme ein weißes Licht abgab. Dieses Leuchten hatte nichts mit der sehr schwachen Radioaktivität des Thoriums zu tun, sondern ist ein gewöhnliches Glühen durch die Hitze der Gasflamme. Aufgrund der Radioaktivität ist man inzwischen zu anderen Materialien übergegangen.
Kernbrennstoffgewinnung
In Brutreaktoren kann Thorium zur Herstellung des Uranisotops 233U verwendet werden: Aus Thorium 232Th wird durch Neutronenbestrahlung 233Th erbrütet; dieses zerfällt über Protactinium 233Pa in Uran 233U. Inzwischen wird eine Technologie entwickelt, um auch in Druckwasserreaktoren diese Reaktion durchzuführen. Ziel ist die Atommüll-Menge zu reduzieren. Das entstandene 233U ist mit thermischen Neutronen gut spaltbar und wird von den Reaktoren verbraucht.
- Die Zeitangaben sind Halbwertszeiten.
Da Thorium wesentlich häufiger als Uran, erst recht als das natürliche spaltbare Isotop 235U, ist, wird dieser Prozess nach der zu erwartenden Abnahme der weltweiten Uranvorräte möglicherweise in Zukunft eine wichtige Energiequelle sein. Der deutsche Thorium-Hochtemperaturreaktor wurde nach wenigen Jahren kommerziellen Betriebs allerdings 1986 vorzeitig stillgelegt.
Andere Anwendungen
Zur Verbesserung der Zündeigenschaften der beim Wolfram-Inertgas-Schweißen (WIG-Schweißen) eingesetzten Elektroden wurde Thoriumoxid in der Größenordnung von 1 bis 4% beigemischt. Diese Verwendung ist inzwischen wegen der Strahlenbelastung durch Dämpfe und Schleifstaub nahezu eingestellt worden. Moderne WIG-Elektroden arbeiten mit Cer-Zusätzen.
Als Glühelektrodenwerkstoff eingesetzter Wolframdraht wird zur Verringerung der Elektronen-Austrittsarbeit mit etwa 1-3 % Thoriumdioxid dotiert. Dies ermöglicht die Reduzierung der zu einer vergleichbaren Emission notwendigen Temperatur in Elektronenröhren und verbessert das Startverhalten von Entladungslampen. Im Lampenbau wird Thorium ferner als Getter in Form von Thoriumoxid-Pillen oder Thoriumfolie eingesetzt.
Thoriumdioxid wurde dem Glas für hochwertige optische Linsen zugesetzt, um Linsen mit sehr großem optischen Brechungsindex bei kleiner optischer Dispersion zu produzieren. Optische Geräte aus der Zeit des Zweiten Weltkriegs (z.B. das Aero-Ektar von Kodak) bzw. der frühen Nachkriegsjahre (z.B. einige Summicron-Objektive von Leitz) enthalten gelegentlich Thoriumglas. Thoriumhaltige Linsen haben einen leichten, sich verstärkenden Gelbstich. Wegen der vom Thorium ausgehenden Strahlung wird thoriumhaltiges Glas heute nicht mehr kommerziell hergestellt. Lanthan-haltige Gläser (z.B. LaK9) können Thoriumglas ersetzen.
Sicherheitshinweise
Einstufungen nach der Gefahrstoffverordnung liegen nicht vor, weil diese nur die chemische Gefährlichkeit umfassen, die eine völlig untergeordnete Rolle gegenüber den auf der Radioaktivität beruhenden Gefahren spielt. Auch Letzteres gilt nur, wenn es sich um eine dafür relevante Stoffmenge handelt.
Chemische Toxizität
Die akute chemische Toxizität von Thorium wird als gering eingeschätzt und im Wesentlichen auf die Radioaktivität zurückgeführt. Dies hängt mit der schlechten Wasserlöslichkeit von 0,0001 μg pro Liter des reinen Metalls sowie des meist vorkommenden Thoriumdioxids zusammen. Lediglich in sehr saurem Milieu ab einem pH-Wert von 4 löst sich Thorium besser. Auch Oxalate und andere Komplexbildner erhöhen die Wasserlöslichkeit.
Radiotoxizität
Das Thoriumisotop 232Th ist mit seiner Halbwertszeit von 14,05 Mrd. Jahren noch wesentlich schwächer radioaktiv (geringere Dosisleistung) als Uran, da durch die längere Halbwertszeit weniger Zerfälle pro Sekunde stattfinden und auch die Konzentration der kurzlebigen Zerfallsprodukte geringer bleibt. Thorium ist sowohl ein α-Strahler γ-Strahler und aufgrund dieser Strahlungsart gefährlich bei Inhalation und Ingestion. Metall-Stäube und vor allem Oxide sind aufgrund ihrer Lungengängigkeit radiotoxisch besonders gefährlich und können Krebs verursachen. Beim Lagern und Umgang von bzw. mit Thorium und seinen Verbindungen ist auch die stetige Anwesenheit der Elemente aus der Zerfallsreihe zu beachten. Besonders gefährlich sind starke Beta- und die mit einem hohen 2,6 MeV-Anteil sehr energiereichen und durchdringungsfähigen Gammastrahler.
Thoriumverbindungen
In Übereinstimmung mit seiner Stellung im Periodensystem tritt Thorium in seinen Verbindungen normalerweise in der Oxidationsstufe +4 auf; Thorium(III)- und Thorium(II)-Verbindungen sind seltener. Eine Besonderheit bilden die Carbide der Actinoide ohne feste Stöchiometrie.
- Thoriumdioxid, Thorium(IV)-oxid (ThO2) hat mit 3300 °C einen der höchsten Schmelzpunkte aller Metalloxide. Nur einige wenige Metalle, wie Wolfram, und einige Verbindungen, wie Tantalcarbid, besitzen höhere Schmelzpunkte.
- Thoriumnitrat, Thorium(IV)-nitrat (Th(NO3)4) ist eine farblose, leicht in Wasser und Alkohol lösliche Verbindung. Das Nitrat ist ein wichtiges Zwischenprodukt bei der Darstellung von Thorium(IV)-oxid sowie von Thoriummetall und wird auch bei der Erzeugung von Gasglühkörpern eingesetzt.
- Thoriumnitrid, Thorium(IV)-nitrid (Th3N4) entsteht beim Glühen von Thorium in Stickstoffatmosphäre und hat einen messingfarbenen Glanz. Thoriumnitrid ist hygroskopisch und zerfällt innerhalb weniger Stunden durch Luftfeuchte.
- Thoriumcarbid, ThC2 bildet gelbe, monokline Kristalle mit einem Schmelzpunkt von 2.655 °C. Das Carbid wird bei etwa 9 K supraleitend. In Form des Mischcarbids (Th, U)C2 wird Thoriumcarbid als Brennstoff in gasgekühlten Hochtemperaturreaktoren eingesetzt. Die Darstellung des Carbidgemisches erfolgt durch Umsetzung der Thorium- und Uraniumoxide mit Kohlenstoff bei 1600 bis 2000 °C.
Historische Bezeichnungen
"Thorium-G"
Bei der auch als Weltvernichtungsmaschine titulierten "Cobalt-Thorium-G"-Bombe in Stanley Kubricks Film "Dr. Seltsam oder: Wie ich lernte, die Bombe zu lieben" handelt es sich in erster Linie um eine Kobaltbombe. Verwendet man im Bombendesign Thorium (möglicherweise anstelle von Uran in der Fissionsstufe oder im Mantel), so entsteht bei der Explosion u.a. radioaktives, giftiges und langlebiges Protactinium-231, was das Kontaminationspotential des Fallouts beträchtlich steigern würde. Die Halbwertszeit von Protactinium-231 beträgt allerdings 32.760 Jahre und weicht somit von der im Film genannten (93,7 bzw. 100 Jahre) deutlich ab.
"Thorium-X"
Unter der Bezeichnung Thorium-X wurden vor allem in der 1. Hälfte des
20. Jahrhunderts verschiedene Lösungen gehandelt, die Thorium- und andere
radioaktive Nuklide enthielten. In den USA
kam z.B. eine Tinktur
dieses Namens bis etwa 1960 in der Radiotherapie von
Hautkrankheiten zur Anwendung. In Deutschland
gab es um 1930 Badezusätze und Ekzemsalben
der Marke "Thorium-X", die wegen der offenkundigen Gesundheitsgefahren
allerdings kurz darauf aus dem Handel genommen wurden.
Ferner wurde in den 1960ern in der Universitätsklinik Münster (Hüfferstiftung)
Thorium-X In den USA
kam z.B. eine Tinktur
dieses Namens bis etwa 1960 in der Radiotherapie von
Hautkrankheiten zur Anwendung. In Deutschland
gab es um 1930 Badezusätze und Ekzemsalben
der Marke "Thorium-X", die wegen der offenkundigen Gesundheitsgefahren
allerdings kurz darauf aus dem Handel genommen wurden.
Ferner wurde in den 1960ern in der Universitätsklinik Münster (Hüfferstiftung)
Thorium-X bei Morbus-Bechterew-Patienten
gegen eine weitere Versteifung der Wirbelsäule eingesetzt. Der Patient erhielt
während eines circa dreimonatigen stationären Aufenthaltes einmal pro Woche eine
Thorium-X-Injektion. Die fortschreitende Versteifung wurde dadurch für ca. 15
Jahre weitgehend gestoppt.
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 02.03. 2024