Unitäre Abbildung
Eine unitäre Abbildung oder unitäre Transformation ist in der Mathematik eine Abbildung zwischen zwei komplexen Skalarprodukträumen, die das Skalarprodukt erhält. Unitäre Abbildungen sind stets linear, injektiv, normerhaltend und abstandserhaltend. Die bijektiven unitären Abbildungen eines Skalarproduktraums in sich bilden mit der Hintereinanderausführung als Verknüpfung eine Untergruppe der Automorphismengruppe des Raums. Die Eigenwerte einer solchen Abbildung haben alle den Betrag eins. In endlichdimensionalen Skalarprodukträumen können bijektive unitäre Abbildungen durch unitäre Matrizen dargestellt werden.
Die entsprechenden Gegenstücke bei reellen Skalarprodukträumen sind orthogonale Abbildungen. Eine bijektive unitäre Abbildung zwischen zwei Hilberträumen wird auch unitärer Operator genannt.
Definition
Eine Abbildung
zwischen zwei komplexen Skalarprodukträumen
und
heißt unitär, wenn für alle Vektoren
gilt. Eine unitäre Abbildung ist demnach dadurch charakterisiert, dass sie
das Skalarprodukt von Vektoren erhält. Insbesondere bildet eine unitäre
Abbildung zueinander
orthogonale Vektoren
und
(also Vektoren, deren Skalarprodukt null ist) auf zueinander orthogonale
Vektoren
und
ab.
Beispiele
ist trivialerweise unitär. Im Koordinatenraum
sind unitäre Abbildungen gerade von der Form
,
wobei
eine unitäre
Matrix ist. Im Raum
der quadratisch
summierbaren komplexen Zahlenfolgen
stellt beispielsweise der Rechtsshift
eine unitäre Abbildung dar. Weitere wichtige unitäre Abbildungen sind Integraltransformationen der Form
mit einem geeignet gewählten Integralkern .
Ein wichtiges Beispiel hierfür ist die Fouriertransformation,
deren Unitarität aus dem Satz
von Plancherel folgt.
Eigenschaften
Im Folgenden sei das komplexe Skalarprodukt linear im ersten und semilinear im
zweiten Argument. Die Zusätze
werden dabei weggelassen, da durch das Argument klar wird, um welchen Raum es
sich jeweils handelt.
Linearität
Eine unitäre Abbildung ist linear,
das heißt für alle Vektoren
und Skalare
gilt
.
Es gilt nämlich aufgrund der Bilinearität und der Symmetrie des Skalarprodukts
sowie
Aus der positiven Definitheit des Skalarprodukts folgt daraus dann die Additivität und die Homogenität der Abbildung.
Injektivität
Der Kern
einer unitären Abbildung enthält nur den Nullvektor,
denn für
gilt
und aus der positiven Definitheit des Skalarprodukts folgt daraus dann
.
Eine unitäre Abbildung ist demnach stets injektiv.
Sind
und
endlichdimensional mit der gleichen Dimension, dann gilt aufgrund des Rangsatzes
und somit ist
auch surjektiv
und damit bijektiv.
Unitäre Abbildungen zwischen unendlichdimensionalen Räumen müssen jedoch nicht
notwendigerweise surjektiv sein; ein Beispiel hierfür ist der Rechtsshift.
Normerhaltung
Eine unitäre Abbildung erhält die Skalarproduktnorm eines Vektors, das heißt
,
denn es gilt
.
Umgekehrt ist jede lineare Abbildung zwischen zwei komplexen Skalarprodukträumen, die die Skalarproduktnorm erhält, unitär. Es gilt nämlich aufgrund der Bilinearität und der Symmetrie des Skalarprodukts einerseits
und mit der Linearität der Abbildung andererseits
Durch Gleichsetzen der beiden Gleichungen folgt daraus dann die
Übereinstimmung der Realteile. Durch eine analoge Betrachtung von
folgt auch die Übereinstimmung der Imaginärteile und damit die Unitarität der
Abbildung.
Isometrie
Aufgrund der Normerhaltung und der Linearität erhält eine unitäre Abbildung
auch den Abstand zweier Vektoren, denn
für die von der Norm induzierte
Metrik
gilt
.
Eine unitäre Abbildung stellt damit eine Isometrie dar. Umgekehrt ist jede lineare Abbildung zwischen zwei Skalarprodukträumen unitär, wenn sie Abstände erhält. Aus der Polarisationsformel folgt nämlich
Existiert eine bijektive unitäre Abbildung zwischen zwei Skalarprodukträumen, dann sind die beiden Räume isometrisch isomorph.
Unitäre Endomorphismen
Gruppeneigenschaften
Eine unitäre Abbildung
stellt einen Endomorphismus
dar. Die Hintereinanderausführung
zweier unitärer Endomorphismen ist wiederum unitär, denn es gilt
.
Ist ein unitärer Endomorphismus bijektiv, dann ist seine Inverse
aufgrund von
ebenfalls unitär. Die bijektiven unitären Endomorphismen von
bilden demnach eine Untergruppe
der Automorphismengruppe
.
Ist der Raum endlichdimensional mit der Dimension
,
so ist diese Gruppe isomorph
zur unitären
Gruppe
.
Eigenwerte
Ist
ein Eigenwert
einer unitären Abbildung
mit zugehörigem Eigenvektor
,
so gilt
und damit .
Die Eigenwerte einer unitären Abbildung haben also alle den Betrag eins und sind
demnach von der Form
mit .
Abbildungsmatrix
Die Abbildungsmatrix
einer unitären Abbildung
bezüglich einer Orthonormalbasis
von
ist stets unitär,
das heißt
,
denn es gilt
,
wobei
und
sind.
Unitäre Operatoren
Eine bijektive
unitäre Abbildung
zwischen zwei Hilberträumen
wird auch unitärer Operator genannt. Unitäre Operatoren sind stets beschränkt
und normal.
Derinverse
Operator eines unitären Operators ist gleich seinem adjungierten
Operator, das heißt, es gilt
.
Wichtige Beispiele für unitäre Operatoren zwischen Funktionenräumen sind die Fouriertransformation und die Zeitentwicklungsoperatoren der Quantenmechanik.
Siehe auch
Basierend auf einem Artikel in

© biancahoegel.de
Datum der letzten Änderung: Jena, den: 21.01. 2021