Frobenius-Skalarprodukt
Das Frobenius-Skalarprodukt ist in der linearen Algebra ein Skalarprodukt auf dem Vektorraum der reellen oder komplexen Matrizen. Es berechnet sich durch komponentenweise Multiplikation der Einträge zweier Matrizen und nachfolgende Summation über all diese Produkte. Im komplexen Fall wird dabei immer ein Element komplex konjugiert. Das Frobenius-Skalarprodukt kann auch als Spur des Matrizenprodukts der beiden Matrizen berechnet werden, wobei eine der Matrizen transponiert beziehungsweise adjungiert wird.
Mit dem Frobenius-Skalarprodukt wird der Matrizenraum zu einem Skalarproduktraum. Die von dem Frobenius-Skalarprodukt abgeleitete Norm heißt Frobeniusnorm. Eine Verallgemeinerung des Frobenius-Skalarprodukts auf unendlichdimensionale Vektorräume ist das Hilbert-Schmidt-Skalarprodukt. Das Frobenius-Skalarprodukt wird unter anderem in der Kontinuumsmechanik bei der tensoriellen Beschreibung der Deformation von Vektorfeldern verwendet. Es ist nach dem deutschen Mathematiker Ferdinand Georg Frobenius benannt.
Definition
Das Frobenius-Skalarprodukt zweier, nicht notwendigerweise quadratischer,
reeller Matrizen
und
ist definiert als
.
Das Frobenius-Skalarprodukt entsteht also durch komponentenweise Multiplikation der Einträge der beiden Ausgangsmatrizen und nachfolgende Summation über all diese Produkte.
Entsprechend dazu ist das Frobenius-Skalarprodukt zweier komplexer Matrizen
und
durch
definiert, wobei der Überstrich die Konjugierte einer komplexen Zahl darstellt. Als alternative Definition kann auch jeweils die zweite statt der ersten Komponente komplex konjugiert werden.
In der Physik wird das Frobenius-Skalarprodukt zweier Matrizen
und
auch durch
notiert.
Beispiel
Das Frobenius-Skalarprodukt der beiden reellen (2 × 2)-Matrizen
und
ist gegeben durch
.
Das Frobenius-Skalarprodukt der beiden komplexen (2 × 2)-Matrizen
und
ist entsprechend dazu
.
Eigenschaften
Skalarprodukt-Axiome
Die folgenden Axiome eines komplexen Skalarprodukts werden für die erste Variante aufgeführt, für die zweite Variante gelten sie analog durch Verschieben der Konjugation. Aus dem komplexen Fall erhält man den reellen Fall durch Weglassen der Konjugation. Das komplexe Frobenius-Skalarprodukt ist sesquilinear, das heißt semilinear im ersten Argument, das heißt
und
sowie linear im zweiten Argument, also
und
Weiter ist es hermitesch, das heißt
,
und positiv definit, also
und
.
Diese Eigenschaften folgen direkt aus den Kommutativ-
und Distributivgesetzen
der Addition und Multiplikation, sowie der positiven Definitheit der komplexen
Betragsfunktion
.
In der zweiten komplexen Variante ist das Frobenius-Skalarprodukt linear im
ersten und semilinear im zweiten Argument. Im Spezialfall zweier einzeiliger
oder einspaltiger Matrizen entspricht das Frobenius-Skalarprodukt dem Standardskalarprodukt
der beiden Zeilen- oder Spaltenvektoren. Mit dem Frobenius-Skalarprodukt wird
der Matrizenraum zu einem Skalarproduktraum,
sogar zu einem Hilbertraum.
Darstellung als Spur
Das reelle Frobenius-Skalarprodukt hat die folgende Darstellung als Spur
,
wobei
die transponierte
Matrix von
ist. Entsprechend dazu hat das komplexe Frobenius-Skalarprodukt die
Darstellung
,
wobei
die adjungierte
Matrix von
ist.
Verschiebungseigenschaft
Das reelle Frobenius-Skalarprodukt besitzt folgende Verschiebungseigenschaft
für alle
und
:
.
Entsprechend gilt für das komplexe Frobenius-Skalarprodukt für alle
und
.
Beide Eigenschaften folgen aus der zyklischen Vertauschbarkeit von Matrizen unter der Spur.
Invarianzen
Aufgrund der Spurdarstellung und der Verschiebungseigenschaft gilt für das
reelle Frobenius-Skalarprodukt zweier Matrizen
.
Für das komplexe Frobenius-Skalarprodukt zweier Matrizen
gilt entsprechend
.
Induzierte Norm
Die von dem Frobenius-Skalarprodukt abgeleitete Norm ist die Frobeniusnorm
.
Die Frobeniusnorm ist damit insbesondere invariant unter unitären Transformationen und es gilt die Cauchy-Schwarzsche Ungleichung
.
Daraus folgt dann die Abschätzung
,
wobei im Fall reeller Matrizen die Adjungierte durch die Transponierte ersetzt wird.
Abschätzung über die Singulärwerte
Sind
die Singulärwerte
von
und
diejenigen von
mit
,
dann gilt für das Frobenius-Skalarprodukt die Abschätzung
,
Diese Abschätzung stellt eine Verschärfung der obigen Cauchy-Schwarz-Ungleichung dar.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 02.12. 2016