Lineares Gleichungssystem
Ein lineares Gleichungssystem (kurz LGS) ist in der linearen Algebra eine Menge linearer Gleichungen mit einer oder mehreren Unbekannten, die alle gleichzeitig erfüllt sein sollen.
Ein entsprechendes System für drei Unbekannte
sieht beispielsweise wie folgt aus:
Für
sind alle drei Gleichungen erfüllt, es handelt sich um eine Lösung des
Systems. Eine Lösung muss also im Unterschied zur Lösung einer einzigen
Gleichung (bestehend aus einer einzigen Zahl) hier aus einem n-Tupel, in
diesem Fall einem Zahlentripel bestehen. Dieses wird auch als Lösungsvektor bezeichnet.
Allgemein lässt sich ein lineares Gleichungssystem mit
Gleichungen und
Unbekannten immer in die folgende Form bringen:
Lineare Gleichungssysteme werden, wenn alle
gleich 0 sind, homogen genannt, andernfalls inhomogen. Homogene
Gleichungssysteme besitzen stets mindestens die sogenannte triviale Lösung, bei
der alle Variablen gleich 0 sind. Bei inhomogenen Gleichungssystemen kann
dagegen der Fall eintreten, dass überhaupt keine Lösung existiert.
Beispiel

Lineare Gleichungssysteme entstehen vielfach als Modelle von praktischen Aufgabenstellungen. Ein typisches Beispiel aus der Schulmathematik lautet wie folgt:
„Ein Vater und ein Sohn sind zusammen 62 Jahre alt. Vor sechs Jahren war der Vater viermal so alt wie damals der Sohn. Wie alt ist jeder?“
Es lässt sich auch durch das folgende lineare Gleichungssystem beschreiben:
Die Variable
repräsentiert hier das Alter des Vaters und die Variable
das des Sohnes. Das Gleichungssystem wird in einem ersten Schritt üblicherweise
in eine Standardform gebracht, bei der auf der linken Seite nur Terme mit
Variablen und auf der rechten Seite die reinen Zahlen stehen. Im vorliegenden
Beispiel wird dazu die zweite Gleichung ausmultipliziert und
umgestellt.
Um dieses Gleichungssystem zu lösen, kann auf eine Vielzahl von
Lösungsverfahren (siehe
Lösungsverfahren) zurückgegriffen werden. Beispielhaft wird hier das
Additionsverfahren
verwendet. Um zunächst die Variable
zu eliminieren, wird die erste Gleichung von der zweiten subtrahiert.
Die entstandene Gleichung wird nach der Variablen
aufgelöst, indem beide Seiten durch
geteilt werden. Das ergibt das Alter
des Sohnes, der 16 Jahre alt ist. Dieser Wert für
wird wieder in die erste Gleichung eingesetzt.
Durch die Auflösung der Gleichung nach der Variablen
lässt sich das Alter des Vaters berechnen, der 46 Jahre alt ist.
Matrixform
Für die Behandlung von linearen Gleichungssystemen ist es nützlich, alle Koeffizienten
zu einer Matrix
der sogenannten Koeffizientenmatrix zusammenzufassen:
Des Weiteren lassen sich auch alle Unbekannten und die rechte Seite des Gleichungssystems zu einspaltigen Matrizen (das sind Spaltenvektoren) zusammenfassen:
Damit schreibt sich ein lineares Gleichungssystem unter Benutzung der Matrix-Vektor-Multiplikation kurz
Sowohl die Koeffizienten ,
die Unbekannten
als auch die
entstammen demselben Körper
.
Insbesondere gilt
und
Zur Festlegung eines linearen Gleichungssystems ist die Angabe der
Unbekannten nicht nötig. Es genügt die Angabe der erweiterten
Koeffizientenmatrix, die entsteht, wenn an die Koeffizientenmatrix
eine Spalte mit der rechten Seite
des Gleichungssystems angefügt wird:
Lösbarkeit
Ein Vektor
ist eine Lösung des linearen Gleichungssystems, wenn
gilt. Ob und wie viele Lösungen ein Gleichungssystem besitzt, ist
unterschiedlich. Bei linearen Gleichungssystemen über einem unendlichen Körper
können drei Fälle auftreten:
- Das lineare Gleichungssystem hat keine Lösung, d.h., die Lösungsmenge ist die leere Menge.
- Das lineare Gleichungssystem hat genau eine Lösung, d.h., die Lösungsmenge enthält genau ein Element.
- Das lineare Gleichungssystem hat unendlich viele Lösungen. Die Lösungsmenge enthält in diesem Falle unendlich viele n-Tupel, die alle Gleichungen des Systems erfüllen.
Über einem endlichen Körper ist die Anzahl der Lösungen eine Potenz der Mächtigkeit
von .
Lösbarkeitskriterien
Ein lineares Gleichungssystem ist genau dann lösbar, wenn der Rang der
Koeffizientenmatrix
gleich dem Rang der erweiterten Koeffizientenmatrix
ist (Bedingung nach Georges Fontené,
Eugène Rouché
und Ferdinand Georg Frobenius).
Ist der Rang der Koeffizientenmatrix gleich dem Rang der erweiterten
Koeffizientenmatrix und auch gleich der Anzahl der Unbekannten, so besitzt das
Gleichungssystem genau eine Lösung.
Bei einem quadratischen Gleichungssystem, also im Fall
(siehe unten), gibt die Determinante
Auskunft über die Lösbarkeit. Das Gleichungssystem ist genau dann eindeutig
lösbar, wenn der Wert der Determinante der Koeffizientenmatrix ungleich null
ist. Ist der Wert jedoch gleich null, hängt die Lösbarkeit von den Werten der
Nebendeterminanten ab. Bei diesen wird jeweils eine Spalte der
Koeffizientenmatrix durch die Spalte der rechten Seite (den Vektor
)
ersetzt. Nur wenn alle Nebendeterminanten den Wert null haben, kann das System
unendlich viele Lösungen haben, ansonsten ist das Gleichungssystem unlösbar.
Insbesondere Gleichungssysteme mit mehr Gleichungen als Unbekannten,
sogenannte überbestimmte
Gleichungssysteme, besitzen häufig keine Lösung. Beispielsweise besitzt das
folgende Gleichungssystem keine Lösung, da
nicht beide Gleichungen erfüllen kann:
Näherungslösungen von überbestimmten Gleichungssystemen werden dann meist über die Ausgleichungsrechnung definiert und bestimmt.
Dass ein lineares Gleichungssystem unendlich viele Lösungen hat, kann nur
vorkommen, wenn es weniger linear
unabhängige Gleichungen als Unbekannte gibt und der zugrundeliegende Körper
unendlich viele Elemente enthält. Beispielsweise besitzt das folgende (aus nur
einer Gleichung bestehende) Gleichungssystem unendlich viele Lösungen, nämlich
alle Vektoren mit
Lösungsmenge
Die Lösungsmenge
eines linearen Gleichungssystems besteht aus allen Vektoren
für die
erfüllt ist:
Liegt ein homogenes lineares Gleichungssystem vor, so bildet dessen
Lösungsmenge
einen Untervektorraum
von
Damit gilt die Superpositionseigenschaft,
nach der für eine oder mehrere Lösungen
auch deren Linearkombinationen
(mit beliebigen
)
Lösungen des Gleichungssystems sind. Die Lösungsmenge heißt daher auch
Lösungsraum und ist identisch mit dem Kern
der Matrix
Bezeichnet
den Rang der Matrix
dann ist nach dem Rangsatz
die Dimension des Lösungsraumes gleich dem Defekt
der Matrix
Ist die Lösungsmenge eines inhomogenen linearen Gleichungssystem nicht
leer, dann ist sie ein affiner
Unterraum von
Sie hat dann die Form
wobei
der Lösungsraum des zugehörigen homogenen Gleichungssystems ist und
eine beliebige Lösung des inhomogenen Gleichungssystems. Ein inhomogenes
Gleichungssystem ist folglich genau dann eindeutig lösbar, wenn der Nullvektor die einzige
Lösung („triviale Lösung“) des homogenen Gleichungssystems ist. Insbesondere
gilt entweder
oder
mit
Die Lösungsmenge eines linearen Gleichungssystems verändert sich nicht, wenn eine der drei elementaren Zeilenumformungen durchgeführt wird:
- Vertauschen zweier Zeilen
- Multiplizieren einer Zeile mit einer von null verschiedenen Zahl
- Addieren einer Zeile (oder des Vielfachen einer Zeile) zu einer anderen Zeile
Die Lösungsmenge eines quadratischen linearen Gleichungssystems verändert sich sogar dann nicht, wenn das Gleichungssystem mit einer regulären Matrix multipliziert wird.
Bestimmung über die erweiterte Koeffizientenmatrix
Die Form der Lösungsmenge lässt sich grundsätzlich mit Hilfe der erweiterten Koeffizientenmatrix bestimmen, indem diese mit Hilfe elementarer Zeilenumformungen (siehe Gauß-Verfahren) in Stufenform gebracht wird:
Um immer genau diese Form zu erhalten, muss man manchmal auch
Spaltenvertauschungen durchführen. Spaltenvertauschungen ändern die Reihenfolge
der Variablen, was man am Schluss berücksichtigen muss. Außerdem wird hier auch
angenommen, dass die Koeffizienten
nicht null sind.
Die Anzahl der Lösungen lässt sich dann an den
ablesen:
- Ist mindestens eines der
ungleich null, so gibt es keine Lösung.
- Sind alle
gleich null (oder
), so gilt:
- Ist
, so ist das Gleichungssystem eindeutig lösbar.
- Ist
, gibt es unendlich viele Lösungen. Der Lösungsraum hat die Dimension
.
- Ist
Durch weitere elementare Zeilenumformungen kann die Matrix in folgende Form gebracht werden:
Sofern es überhaupt eine Lösung gibt (),
gilt für die Lösungsmenge
:
Hierbei ist
der Vektor der freien Variablen.
Formen von Gleichungssystemen
Lineare Gleichungssysteme können in Formen vorliegen, in denen sie leicht gelöst werden können. Vielfach werden beliebige Gleichungssysteme mittels eines Algorithmus in eine entsprechende Gestalt gebracht, um anschließend eine Lösung zu finden.
Quadratisch
Von einem quadratischen Gleichungssystem ist die Rede, wenn die Zahl der Unbekannten gleich der Zahl der Gleichungen ist. Ein Gleichungssystem dieser Form kann, wenn die Zeilen oder Spalten linear unabhängig sind, eindeutig gelöst werden (Lösungsverfahren werden weiter unten besprochen).
Stufenform, Treppenform
In der Stufenform (auch Zeilenstufenform, Zeilennormalform, Stufengestalt, Staffelgestalt, Treppenform, Treppenstufenform oder Treppennormalform) verringert sich in jeder Zeile die Zahl der Unbekannten um mindestens eine, die dann auch in den darauffolgenden Zeilen nicht mehr vorkommt. Durch die Anwendung des gaußschen Eliminationsverfahrens kann ein beliebiges Gleichungssystem in diese Form gebracht werden.
Beispiel (die Koeffizienten von ausgelassenen Elementen sind ):
Lineare Gleichungssysteme in Stufenform können durch Rückwärtseinsetzen (Rücksubstitution) gelöst werden. Beginnend mit der letzten Zeile wird damit die Unbekannte berechnet und das gewonnene Ergebnis jeweils in die darüberliegende Zeile eingesetzt, um die nächste Unbekannte zu berechnen.
Lösung des obigen Beispiels:
- Auflösen der zweiten Zeile nach
- Einsetzen von
in die erste Zeile:
- Auflösen der ersten Zeile nach
- Mit
sind alle Vektoren der Form
Lösungen des Gleichungssystems.
Dreiecksform
Die Dreiecksform ist ein Sonderfall der Stufenform, bei der jede Zeile genau
eine Unbekannte weniger als die vorhergehende hat. Das bedeutet, dass alle
Koeffizienten
der Hauptdiagonale
von
verschieden sind. Die Dreiecksform entsteht bei Anwendung des gaußschen
Eliminationsverfahrens, wenn das Gleichungssystem genau eine Lösung hat.
Beispiel (die Koeffizienten von ausgelassenen Elementen sind ):
Wie lineare Gleichungssysteme in Stufenform können auch solche in Dreiecksform durch Rückwärtseinsetzen gelöst werden.
Reduzierte Stufenform
Auch die reduzierte Stufenform (auch normierte Zeilenstufenform) ist ein
Sonderfall der Stufenform. Bei ihr treten die jeweils ersten Unbekannten jeder
Zeile nur ein einziges Mal auf und haben den Koeffizienten
Die reduzierte Stufenform eines linearen Gleichungssystems ist eindeutig: Es
gibt also für jedes lineare Gleichungssystem genau eine reduzierte Stufenform.
Durch die Anwendung des Gauß-Jordan-Algorithmus
kann ein beliebiges lineares Gleichungssystem in diese Form gebracht werden.
Beispiel (die Koeffizienten von ausgelassenen Elementen sind ):
Die Lösung des linearen Gleichungssystems kann nun direkt abgelesen werden:
Sofern
gesetzt und das Gleichungssystem rekursiv gelöst wird, ergeben sich alle
Vektoren der Form
als Lösungen.
Weitere Formen
In der Praxis relevant sind die Sonderfälle dünnbesetzter Matrizen (sehr große Matrizen mit relativ wenigen Elementen ungleich null) und Bandmatrizen (ebenfalls große Matrizen, deren nicht verschwindende Elemente sich um die Hauptdiagonale konzentrieren), die sich mit speziell angepassten Lösungsverfahren (s.u.) behandeln lassen.
Lösungsverfahren
Die Methoden zur Lösung von linearen Gleichungssystemen werden in iterative und direkte Verfahren unterteilt. Beispiele für direkte Verfahren sind das Einsetzungsverfahren, das Gleichsetzungsverfahren und das Additionsverfahren für einfache Gleichungssysteme sowie das auf dem Additionsverfahren basierende gaußsche Eliminationsverfahren, das ein Gleichungssystem auf Stufenform bringt. Eine Variante des Gauß-Verfahrens ist die Cholesky-Zerlegung, die nur für symmetrische, positiv definite Matrizen funktioniert. Doppelt so viel Aufwand wie das Gauß-Verfahren braucht die QR-Zerlegung, die dafür stabiler ist. Die Cramersche Regel verwendet Determinanten, um Formeln für die Lösung eines quadratischen linearen Gleichungssystems zu erzeugen, wenn dieses eindeutig lösbar ist. Für die numerische Berechnung ist sie auf Grund des hohen Rechenaufwands jedoch nicht geeignet.
Iterative Verfahren sind beispielsweise die zur Klasse der Splitting-Verfahren gehörenden Gauß-Seidel- und Jacobi-Verfahren. Diese konvergieren nicht für jede Matrix und sind für viele praktische Probleme sehr langsam. Modernere Verfahren sind etwa vorkonditionierte Krylow-Unterraum-Verfahren, die insbesondere für große dünnbesetzte Matrizen sehr schnell sind, sowieMehrgitterverfahren zur Lösung von Systemen, die aus der Diskretisierung bestimmter partieller Differentialgleichungen stammen.
Bei Anwendungen (z.B. Geodäsie) werden oft Messungen unterschiedlichen Typs ausgeführt, und es werden, um die Auswirkung von Messfehlern zu verringern, mehr Messungen ausgeführt, als Unbekannte zu bestimmen sind. Jede Messung liefert eine Gleichung zur Bestimmung der Unbekannten. Wenn diese Gleichungen nicht alle linear sind, wird das Gleichungssystem mit Verwendung von bekannten Näherungswerten der Unbekannten linearisiert. Dann sind anstelle der eigentlichen Unbekannten deren kleine Abweichungen von den Näherungswerten zu bestimmen. In der Regel widersprechen sich die Gleichungen, wenn mehr Gleichungen als Unbekannte vorhanden sind, sodass es keine strenge Lösung gibt. Als Ausweg wird dann üblicherweise durch eine Ausgleichung mittels der Methode der kleinsten Quadrate eine Lösung bestimmt, die typischerweise keine Gleichung exakt erfüllt, aber unter vernünftigen Annahmen über die Messfehler eine optimale Näherung der „wahren“ Messgrößen angibt.
Die derzeit beste bekannte asymptotische obere Schranke an arithmetischen
Operationen, um ein beliebiges lineares Gleichungssystem zu lösen, liefert ein
praktisch nicht anwendbarer Algorithmus von Don Coppersmith und Shmuel Winograd aus dem Jahre 1990,
der ein -System
in O(n2,376)
löst.
Klar ist, dass mindestens O(n2) Operationen notwendig sind; nicht
jedoch, ob diese untere Schranke auch erreicht werden kann.
Fast singuläre lineare Gleichungssysteme können durch Singulärwertzerlegung auf numerische Weise passabel gelöst werden.


© biancahoegel.de
Datum der letzten Änderung: Jena, den: 12.02. 2023