Ultraviolettstrahlung

Ultraviolettstrahlung, kurz Ultraviolett oder UV-Strahlung, umgangssprachlich auch ultraviolettes Licht oder Schwarzlicht, selten auch Infraviolett-Strahlung (Abk. IV-Strahlung), ist für den Menschen unsichtbare elektromagnetische Strahlung mit einer Wellenlänge, die kürzer ist als die des für den Menschen sichtbaren Lichtes, aber länger als die der Röntgenstrahlung.

Die Bezeichnung ultraviolett (etwa „jenseits von Violett“) rührt dabei daher, dass das UV-Spektrum mit etwas kürzeren Wellenlängen als jenen beginnt, die der Mensch gerade noch als Farbe Blauviolett wahrzunehmen vermag. Wahrgenommen werden durch die Strahlung zum Leuchten im sichtbaren Bereich angeregte fluoreszierende Stoffe.

Entdeckung

Die Entdeckung der UV-Strahlung folgte aus den ersten Experimenten mit der Schwärzung von Silbersalzen im Sonnenlicht. Im Jahr 1801 machte der deutsche Physiker Johann Wilhelm Ritter die Beobachtung, dass Strahlen gerade jenseits des violetten Endes im sichtbaren Spektrum im Schwärzen von Silberchloridpapier sehr effektiv waren. Er nannte die Strahlen zunächst „de-oxidierende Strahlen“, um ihre chemische Wirkungskraft zu betonen und sie von den infraroten „Wärmestrahlen“ am anderen Ende des Spektrums zu unterscheiden. Bis ins 19. Jahrhundert wurde UV als „chemische Strahlung“ bezeichnet. Heutzutage werden nur noch die Bezeichnungen „Infrarotstrahlung“ und „Ultraviolettstrahlung“ verwendet, um die beiden Strahlungsarten zu charakterisieren.

Anfang des 20. Jahrhunderts entdeckte man die heilende Wirkung der künstlichen UV-Strahlung. So berichtete der österreichische Arzt Gustav Kaiser (1871–1954), der sich in Würzburg mit elektrotherapeutischen Studien beschäftigt hatte, in der Vollversammlung der Gesellschaft der Ärzte in Wien im Februar 1902 über den Selbstversuch mit einer UV-Glühlampe, mit deren Hilfe er die Gesundung einer nicht heilen wollenden Wunde erreichte. Eine schwer erkrankte tuberkulöse Patientin soll nach dem vorliegenden Bericht mittels des „blauen Lichts“ in vier Wochen geheilt worden sein. Ermutigt durch diese Erfolge dehnte Kaiser seine Versuche mit einer Hohllinse auf Hautkrankheiten aus, wobei er ebenfalls günstige Ergebnisse erzielte. Er zog daraus den Schluss, dass die UV-Strahlung keimtötend wirkt.

Spektrum und Bezeichnungen

Einteilung nach Wellenlänge (DIN 5031-7)
Name Abkürzung Wellenlängenbereich in nm Photonenenergie
Nahes UV („Schwarzlicht“) UV-A 380–315 nm 3,26–3,94 eV
Mittleres UV (Dorno-Strahlung) UV-B 315–280 nm 3,94–4,43 eV
Fernes UV UV-C-FUV 280–200 nm 4,43–6,2 eV
Vakuum-UV UV-C-VUV 200–100 nm 6,20–12,4 eV
Extremes UV EUV 121–10 nm 10,25–124 eV

Gemäß DIN 5031, Teil 7, umfasst das Spektrum im Ultravioletten die Wellenlängen von 100 nm bis 380 nm (Grenze zum sichtbaren Licht), die Frequenz der Strahlung reicht also von 789 THz (380 nm) bis 3 PHz (100 nm). Dieser Bereich wird in die Unterbereiche UV-A, UV-B und UV-C eingeteilt. Unabhängig von der Normung nach DIN existieren mehrere, sich überlappende und nicht genau definierte Unterteilungsmuster. Speziell für den biologischen und dermatologischen Bereich zählen beispielsweise die extrem ultraviolette und die vakuumultraviolette Strahlung hierzu. Der UV-Bereich reicht laut World Health Organization (WHO) von 1 nm bis 400 nm.

Für UV-Strahlung mit Wellenlängen unter 300 nm ist in der Fotolithographie (KrF-Excimerlaser mit einer Wellenlänge von 248 nm) und der Lasertechnik der Begriff „tiefes Ultraviolett“ (englisch: deep ultraviolet, DUV) gebräuchlich. Unterhalb 200 nm ist Ultraviolettstrahlung so kurzwellig bzw. energiereich, dass sie durch molekularen Sauerstoff(O2) absorbiert wird; dabei wird der molekulare Sauerstoff (O2) in zwei freie Sauerstoffradikale (2 O) gespalten, die jeweils mit einem weiteren Molekül Sauerstoff (O2) zu Ozon (O3) weiterreagieren. UV-Strahlung mit Wellenlängen kleiner 200 nm kann sich folglich nur unter Schutzgas und die kurzwelligen Anteile unter 100 nm nur noch im Vakuum ausbreiten, darauf geht der Ausdruck „Vakuum-Ultraviolett“ zurück.

Eine vollständige Übersicht über die elektromagnetischen Wellenbereiche findet sich im Artikel Elektromagnetisches Spektrum.

Ultraviolettstrahlungsquellen

Bei Thermischer Strahlung wird der Anteil der UV-Strahlung durch das Plancksche Strahlungsgesetz und das Wiensche Verschiebungsgesetz bestimmt. Durch angeregte Elektronen kann dann UV-Strahlung generiert werden, wenn deren Energie oberhalb 3,3 eV liegt. Gleiches ist bei der Temperatur der Glühwendeln von Glühlampen in geringem Maße gegeben, weshalb insbesondere Halogen-Glühlampen etwas Ultraviolett aussenden.

Veränderung der Intensitätsverteilung der Sonnenstrahlung durch die Erdatmosphäre, insbesondere die UV-Strahlung
Polarlicht über Jupiters Nordpol, vom Hubble Space Telescope im UV-Spektrum fotografiert

Natürliche Quellen

Ultraviolettstrahlung ist im kurzwelligen Anteil der Sonnenstrahlung enthalten. Wegen der Absorption in der Erdatmosphäre (besonders in der Ozonschicht) dringt UV-A- und wenig UV-B-Strahlung mit einer Wellenlänge oberhalb 300 nm bis zur Erdoberfläche vor. Bestimmte Gase, insbesondere FCKW, wirken durch das Sonnen-UV auf die Ozon-Bindung und verschieben das Gleichgewicht in der Ozonschicht, das Ergebnis ist das Ozonloch wobei die UV-B-Exposition der Erdoberfläche zunimmt.

Auch andere kosmische Objekte wie Pulsare, hochangeregte Gasmassen sowie die meisten Fixsterne senden UV-Strahlung aus. Weiterhin enthält Polarlicht eine Ultraviolettstrahlung. Natürliche irdische Ultraviolettquellen sind Gewitterblitze und Elmsfeuer.

Künstliche Quellen

Ultraviolettstrahlung entsteht auch in künstlichen Lichtquellen, wie Quecksilberdampflampen.

Weitere Quellen, deren Ultraviolett-Emission jedoch zweitrangig ist, sind Gasentladungslampen (auch sog. Tageslichtlampen und Vollspektrumröhren u.ä.; hierbei ist die UV-Emission jedoch gesundheitlich unbedenklich, im Gegenteil sogar gewünscht), das Lichtbogenschweißen (sämtliche elektrischen Schweißarten), die Koronabehandlung sowie alle Prozesse, bei denen ionisierte Gase oder sehr hohe Temperaturen auftreten (z.B. Laser-Materialbearbeitung, Ionenquellen, Funkenstrecken usw.)

Wechselwirkung

Ultraviolettstrahlung wird vom menschlichen Auge nicht wahrgenommen, da es schon vorher komplett von der Augenlinse absorbiert wird. Patienten, die nach Unfällen oder chirurgischen Eingriffen ihre Linsen verloren hatten beschrieben UV-Licht als weißliches, „milchiges“ Blau-Violett. Die absorbierende Linse schützt wahrscheinlich die Netzhaut vor Schäden, andernfalls der relativ lang lebende Mensch erblinden könnte. Auch scheint es einen Zusammenhang mit der Sehschärfe zu geben: Tierarten deren Linsen weniger UV-Licht durchdringen lassen, sehen schärfer und genauer. Manche Tiere (Insekten, Vögel, Fische, Reptilien) können sie teilweise wahrnehmen. Nach Untersuchungen von 2014 lassen die Linsen von viel mehr Tieren Ultraviolettes Licht durch, auch jene von Hund und Katze. Ob sie wirklich ultraviolette Strahlung sehen können muss in weiteren Untersuchungen erforscht werden.

Ultraviolettstrahlung zählt neben dem sichtbaren Licht und der Infrarotstrahlung zur Gruppe der optischen Strahlung, da sie gebrochen, reflektiert, transmittiert, absorbiert und/oder gebeugt werden kann.

Unterhalb einer Wellenlänge von ca. 200 nm ist die Energie eines einzelnen ultravioletten Strahlungsquants ausreichend hoch, um Elektronen aus Atomen oder Molekülenzu lösen, d.h., diese zu ionisieren. Wie auch bei Gamma- und Röntgenstrahlung bezeichnet man daher kurzwellige Ultraviolettstrahlung unterhalb 200nm als ionisierende Strahlung.

Physik

Quarzglasist für den gesamten natürlich vorkommenden UV-Bereich transparent. Normales Glas (Natron-Kalk-Glas), insbesondere das gewöhnliches Fensterglas ist für Ultraviolettstrahlung unterhalb von 320 nm nicht durchlässig, Borosilikatglas (Jenaer Glas) lässt dagegen UV-Strahlung bis etwa 290 nm passieren. Für UV-A ist Fensterglas durchlässig. Strahlung unterhalb von 290 nm transmittiert durch natürliche oder synthetische Quarzkristalle und auch Quarzglas (Kieselglas). Andererseits lässt natürlicher Quarz und gewöhnliches Kieselglas durch seinen Titangehalt keine UV-Strahlung unterhalb 200 nm transmittieren, deshalb wird für ozongenerierende UV-Lampen synthetisches hochreines Quarzglas verwendet. Solch eine Anwendung ist die Aufbereitung hochreinen Wassers, wo UV zur Oxidation der gelösten organischen Kohlenstoffverbindungen genutzt wird. Andere Einsatzzwecke ist die ArF-Excimerlaser-Wellenlänge (193 nm). Für kürzere Wellenlängen (bis hinab zu 45 nm) wird einkristallines Kalziumfluorid verwendet. Andererseits trübt kurzwelliges Ultraviolett hoher Intensität Gläser und optische Komponenten. An Optiken (z.B. für Excimerlaser) werden daher hohe Reinheitsanforderungen gestellt.

Ultraviolett ist auf Grund der kurzen Wellenlänge oft die Anregungswellenlänge für Fluoreszenz an Stoffen mit geeigneter chemischer Struktur. Der Äußere Photoeffekt tritt bei Ultraviolett an allen Metalloberflächen auf; er wird in Photomultipliers u.a. an Szintillationsdetektoren zur Registrierung ultravioletter Strahlungsimpulse genutzt (Neutrinodetektor, Nachweis und Klassifizierung ionisierender Strahlung).

Chemie

UV-Strahlung vermag organische Bindungen zu spalten. Andererseits kann die Vernetzung von Monomeren durch energiereiche UV-Strahlung initiiert werden. Bei hohen Energien (also kurzen Wellenlängen) werden organische Bindungen zerstört. Viele Kunststoffe werden durch Ultraviolettstrahlung geschädigt (Trübung, Versprödung, Zerfall).

Sauerstoffwird durch kurzwellige UV-Strahlung unterhalb 200 nm in atomaren Sauerstoff gespalten und es kommt zur Bildung von Ozon und einer Vielzahl anderer Folgereaktionen, wie sie sich in der Ozonschicht abspielen.

Biologie

Obwohl die Ultraviolettstrahlung die niedrigstenergetische der ionisierenden Strahlungen ist, kann sie für den Menschen und andere Organismen gefährlich werden. Auch UV-Strahlung mit größerer Wellenlänge vermag bereits chemische Bindungen organischer Moleküle zu zerstören. Daher ist ein Vorsicht beim Umgang mit Sonnenlicht (Sonnenschutz) und mit technischen UV-Quellen angebracht. Der übermäßige Besuch von Solarien ist aus diesem Grund umstritten.

Die Wirkung der UV-Strahlung lässt sich in verschiedene Wirkbereiche einteilen.

Bereich Wellenlänge Biologische Wirkung
UV-A 315–380 nm

Lange Wellen gelangen bis zur Lederhaut und bewirken

  • direkte Pigmentierung (Konformationsänderung des Melanins) – nur Stunden anhaltende, kurzfristige Bräune, kaum Lichtschutz;
  • Schädigung der Kollagene – die Haut verliert Spannkraft und altert frühzeitig;
  • hohes Melanomrisiko durch Bildung freier Radikale;
  • sind jedoch gering erythem (Sonnenbrand erzeugend).
UV-B 280–315 nm

Kurze Wellen

  • bewirken in der Oberhaut ca. 72 Stunden verzögert Bildung von Melanin – indirekte Pigmentierung, verzögerte, langfristige Bräunung (vgl. Hautfarbe) mit echtem Lichtschutz;
  • dringen weniger tief ein als UV-A, aber mit stark erythemem Effekt (Sonnenbrand);
  • führen zur Bildung des anti-rachitischen Cholecalciferol (Vitamin D3) in der Haut. In dieser Rolle könnte nach 2008 veröffentlichten epidemiologischen Untersuchungen UVB vorbeugend gegen einige Krebsformen sein. Bis 2014 liegen keine randomisierten, kontrollierten Studien darüber vor.
  • UVB-Strahlen besitzen die stärkste kanzerogene Wirkung für die Entstehung von Basalzellkarzinomen und Plattenepithelkarzinomen.
UV-C 100–280 nm Sehr kurzwellig, gelangt nicht bis zur Erdoberfläche, Absorption durch die obersten Luftschichten der Erdatmosphäre, unterhalb etwa 200 nm durch Photolyse des Luftsauerstoffs ozongenerierend.

UV-C-Strahlung (vor allem die bei niedrigem Dampfdruck, mit hoher Ausbeute (30–40 % der angelegten elektrischen Leistung) anregbare Emissionslinie des Quecksilberdampfs bei 253,652 nm) findet in der physikalischen Entkeimungstechnik eine technische Anwendung. Während bei 280 nm (Absorptionsmaximum der meisten Proteine) die darin eingebaute Aminosäure Tryptophan die ultraviolette Strahlung absorbiert, werden bei 265 nm Nukleinsäuren am stärksten geschädigt. Bei etwa 245 nm absorbieren vor allem die Nukleinsäuren, während Proteine hier ein relatives Absorptionsminimum zwischen dem Absorptionsmaximum um 280 nm durch aromatische Aminosäuren (Tryptophan, Tyrosin und Phenylalanin) und der Absorption durch die Peptidbindung zwischen den einzelnen Aminosäuren (Maximum bei etwa 220 nm) zeigen. Daher ist bei 253,7 nm (Primärstrahlung der Niederdruck-Quecksilberdampfentladung) auch die Bestrahlung von Proteinlösungen zur Inaktivierung darin enthaltener Viren und Bakterien möglich.

UV-Strahlung mit Wellenlängen unter 100 nm kommt im Sonnenlicht nur mit sehr geringer Intensität vor. Die Schädigung hängt nicht nur von der Energie der UV-Strahlung ab, sondern auch von der Eindringtiefe und der Zeit der Bestrahlung des Gewebes. Beispielsweise wird UV-C-Strahlung bei 253,7 nm durch verhornte Haut praktisch schon an der Oberfläche vollständig absorbiert und ist daher weniger effektiv bei der Schädigung tieferliegender Zellschichten als UV-B-Strahlung, das schwächer absorbiert wird und bis in diese eindringt. Ein durch eine UV-C-Lampe versehentlich hervorgerufener Sonnenbrand klingt daher schon innerhalb eines Folgetages vollständig ab.

Besondere Vorsicht ist bei Exposition der Augen geboten. Ultraviolett führt zu Bindehautentzündung und Trübung der Hornhaut. Beim Lichtbogenhandschweißen ist eine „Schweißblende“ wegen der kurzwelligen UV-Strahlung vorgeschrieben. Durch Lichtbögen und auch Funkenstrecken entsteht ein breites Spektrum intensiver UV-Strahlung, das bei ungeschützter Anwendung (offen liegende Körperteile) bereits nach wenigen Minuten eine Verbrennung der Haut ähnlich einem Sonnenbrand verursacht. Die Haut fühlt sich dabei „trocken“ an und fängt an zu „spannen“. Es treten Verbrennungen 1. Grades (Rötung) bis 2. Grades (Blasenbildung) auf.

Langzeitschäden wie Hautalterung, Hautkrebs oder Katarakt können auch auftreten, wenn die Erythemschwelle zwar nicht überschritten wird, die Bestrahlung aber häufig erfolgt. Haut und Augen registrieren jede UV-Strahlung und nicht nur diejenige, die über der Erythemschwelle liegt.

UV-Photonen schädigen die DNA (dies ist der Mechanismus für den direkten DNA-Schaden).

DNA-Schäden entstehen durch UV-Strahlung, wenn sich zwei benachbarte Thyminbasen kovalent miteinander verbinden, sodass sie ein Thymindimer bilden. Diese behindern die Replikation oder führen zu Mutationen. Mittels des Enzyms Photolyase und Licht können diese Dimere wieder gespalten und so die DNA repariert werden. Bei allen Plazentatieren, so auch dem Menschen, wurde die Funktion der Photolyase im Laufe der Evolution durch das Nukleotid-Exzisions-Reparatursystem (NER) übernommen. Bei Kindern, die an der Krankheit Xeroderma pigmentosum leiden, liegt ein Defekt der Reparaturenzyme des NER vor. Das hat eine absolute Unverträglichkeit natürlicher Sonnenstrahlung zur Folge („Mondscheinkinder“). Die Patienten entwickeln unter Exposition von natürlicher UV-Strahlung deutlich schneller maligne Hauttumoren als Menschen ohne vergleichbare Enzymdefekte.

UV-B-Strahlung wurde früher auch Dorno-Strahlung genannt, nach Carl Dorno, der diese intensiv untersuchte. Sie bewirkt die photochemische Bildung des anti-rachitischen Calciferol (VitaminD) in der Haut.

Der UV-Index ist eine international festgelegte Messgröße. Er beschreibt die sonnenbrandwirksame solare Bestrahlungsstärke. In der Vorhersage und Warnung wird der UV-Index als maximal zu erwartender UV-Index (max. UVI) angegeben. Er variiert abhängig von der geographischen Lage, der geografischen Höhe, sowie von Jahreszeit und Wetterlage.

Weitere mögliche Schädigungen von organischen Material durch UV-Strahlung sind

Anwendungen

Übersicht elektromagnetisches Spektrum im Bereich der UV-Strahlung mit Anwendungsbereichen
Bezeichnung Wellenlänge Frequenz Photonen-Energie Erzeugung / Anregung Technischer Einsatz
UV-Strahlen 1–380 nm > 789 THz > 5,2 × 10−19 J
> 3,3 eV
  Desinfektion, Spektroskopie
  200–380 nm > 789 THz > 5,2 × 10−19 J
> 3,3 eV
Gasentladung, Synchrotron, Excimerlaser Schwarzlicht Fluoreszenz, Phosphoreszenz, Prüfung von Geldscheinen, Fotolithografie
  50–200 nm > 1,5 PHz > 9,9 × 10−19 J
> 6,2 eV
Gasentladung, Synchrotron, Excimerlaser Fotolithografie
XUV 1–50 nm 6 PHz–300 PHz 2,0 × 10−16–5,0 × 10−18 J

20–1000 eV

XUV-Röhre, Synchrotron EUV-Lithografie, Röntgenmikroskopie, Nanoskopie

Fluoreszenzanregung

Ein Mineral unter Tageslicht und unter UV-Strahlung

Tageslicht

Den natürlichen UV-Anteil des Tageslichts macht man sich bei Waschmittel zu nutze, indem ihm optische Aufheller hinzufügt werden, was Textilien „weißer als weiß“ erscheinen lässt.

Lichtquellen

Ultraviolett ist die primäre Emission in Leuchtstofflampen, effizienten weißen Lichtquellen, in denen die Ultraviolett-Emission einer Gasentladung von Quecksilberdampf zur Anregung von im sichtbaren Spektralbereich fluoreszierenden Leuchtstoffen genutzt wird.

Auch andere Gasentladungslampen enthalten manchmal Leuchtstoffe, um die Farbwiedergabe zu verbessern, indem diese mit dem Ultraviolett-Strahlungsanteil der Entladung angeregt werden. Von sog. Tageslichtlampen und Vollspektrumröhren (u.ä. Bezeichnungen, herstellerabhängig) wird ein dem Sonnenlicht möglichst ähnliches Lichtspektrum inkl. UV und Infrarot abgegeben, um eine natürliche Beleuchtung zu ermöglichen (insb. in Innenräumen, Ergonomie); hierbei ist die Menge der UV-Emission gesundheitlich unbedenklich.

Leuchtdioden (LED), die für den Menschen weiß erscheinendes Licht abstrahlen, benutzen eine blau strahlende Leuchtdiode im Inneren, bestehend aus Materialien wie Indiumgalliumnitrid oder Galliumnitrid. Leuchtdioden, welche UV-Strahlung abgeben, bestehen aus Aluminiumnitrid oder Aluminiumgalliumnitrid und werden ohne Leuchtstoffbeschichtung als direkte UV-Strahlungsquelle eingesetzt. UV-LEDs sind bis zu Wellenlängen knapp unter 250 nm realisierbar.

Biologische Analysen

Einige Farbstoffe, wie das in den Biowissenschaften verwendete DAPI, werden von UV-Strahlung angeregt und emittieren dann ein längerwelliges, also meist sichtbares Licht. Fluoreszierende Stoffe werden als Marker eingesetzt, um biologische Stoffwechselvorgänge oder Genvariationen zu beobachten.

In der Forensik wird die Fluoreszenz von Blut und Sperma zur Sichtbarmachung von Opfer- oder Täterspuren eingesetzt. Das wird z.B. bei der Aufklärung von Kriminalfällen eingesetzt, wenn biologische Spuren (Blut, Sperma, Speichel) an Wänden, in Textilien usw. nachgewiesen werden sollen. Auch in der Medizin wird die Fluoreszenz von organischen Stoffen ausgenutzt. So können Pigmentstörungen der Haut mit Hilfe von UV-Strahlern („Wood-Lampe“) besser sichtbar gemacht werden. Auch bestimmte Hautkeime (Corynebacterium minutissimum) werden mittels dieser Diagnoseleuchten durch die Auslösung einer rötlichen Fluoreszenz (Porphyrinbildung) sichtbar.

Eine andere Anwendung ist die Herkunftsanalyse von Hühnereiern. Dabei wird ausgenutzt, dass das Abrollen charakteristische Spuren auf der Hühnereierschale hinterlassen, die mithilfe von Fluoreszenz nachweisen lassen. Auf diese Weise kann geprüft werden, ob es sich um Eier aus Bodenhaltung oder aus Legebatterien handelt.

Schwarzlicht

Schwarzlichtleuchtstofflampen

Schwarzlicht ist die umgangssprachliche Bezeichnung für UV-A-Strahlung, die durch Niederdruck-Gasentladungslampen erzeugt wird. Diese sind mit speziellen Leuchtstoffen ausgerüstet, um Ultraviolettstrahlung bei 350 nm oder 370 nm ohne einen Anteil an sichtbarem Licht abzugeben. Schwarzlicht wird auch durch Glühlampen mit einem das sichtbare Licht absorbierenden Glaskolben (Nickeloxid-dotiert) und Ultraviolett-Leuchtdioden erzeugt.

„Schwarzlicht“ wird oft für Showeffekte in abgedunkelten Räumen eingesetzt, wie zum Beispiel in Diskotheken, bei Zauberveranstaltungen oder auch für Schwarzlichttheater. Die Strahlung regt fluoreszierende Stoffe zum Leuchten an und da helles Licht vermieden wird wirken sich die Leuchteffekte besonders aus, wie dies beispielsweise bei Textilien, Papieren, künstlichen Zähnen und anderen Materialien mit optischen Aufhellern auffällt.

Anwendungen sind ebenfalls das Sichtbarmachen von Sicherheitsmerkmalen auf Dokumenten, wie Ausweispapieren oder Fahrscheinen, die Echtheitsprüfung von Zahlungsmitteln und die „Neon-Stempel“ am Handrücken als „Eintrittskarte“ in ein Konzert oder als Eigentümermarkierung auf einem Kunstobjekt (gegen Diebstahl).

Analysen

Eine Sammlung von Mineralprobenleuchtet hell in verschiedenen Farben bei Bestrahlung mit UV-A.

Materialprüfung

Aushärtung (Vernetzung) von Polymeren

Intensive UV- Strahlung wird in der Industrie für die Aushärtung spezieller Materialien verwendet:

Elektronik

In der Elektronik wird UV-Strahlung vor allem in der Herstellung von mikroelektronischen Bauelementen bzw. Schaltkreisen sowie entsprechenden Geräten eingesetzt. So erfolgt beispielsweise die Herstellung von Leiterbahnen auf Leiterplatten durch eine Belichtung einer lichtempfindlichen Schicht auf den Leiterplatten mit einer Quecksilberdampflampe. Dabei wird durch die UV-Strahlung einer fotochemische Reaktion im Fotolack ausgelöst. Das gleiche Prinzip wird auch bei der Herstellung integrierter Schaltkreise (Waferbelichtung) angewendet, Fotolithografie (Halbleitertechnik). Hierbei kamen früher ebenfalls Quecksilberdampflampen – vor allem mit die g-Linie (434 nm) und die i-Linie (365 nm) – zum Einsatz. Später dann KrF- und ArF-Excimerlaser (248 nm bzw. 193 nm). Der Trend immer kürzere Wellenlängen zu nutzen, ist dabei der fortwährenden Skalierung der Transistorstrukturen geschuldet.

Neben dem Einsatz in der Herstellung wird in der Elektronik UV-Strahlung auch für weitere Anwendungen genutzt. Ein Beispiel ist das Löschen von EPROM-Speicher mit einer Quecksilberdampflampe (253,7 nm). Hierbei bewirkt die UV-Strahlung eine Freisetzung von Ladungsträgern im Floating-Gate aus Polysilizium, die freiwerdenden Elektronen haben genug Energie, um die Potentialbarriere des Siliziumdioxid-Dielektrikums zu überwinden und abzufließen.

Biologische Anwendun

Desinfektion

Eine Niedrigdruck-Quecksilberdampfröhre ist in einer Sterilbank montiert und entkeimt so die bestrahlten Flächen mit kurzwelliger UV-Strahlung.

Ultraviolette Strahlung wird zur Behandlung von Wasser, Luft und Oberflächen eingesetzt. Aufgrund der Geschwindigkeit der Reaktion – Mikroben werden bei ausreichender Dosis innerhalb von Bruchteilen einer Sekunde inaktiviert – können UV-Strahler nicht nur zur Desinfektion von Oberflächen, sondern auch zur Desinfektion von Wasser, Luft oder sogar in Klimakanälen geführten Luftströmen eingesetzt werden. Vor der Entwicklung von Laminar-Strömungs-Anlagen für Reinräume sowie dem heute üblichen und massiven Einsatz von Desinfektionsmitteln waren daher in Krankenhäusern im Dauerbetrieb arbeitende schwache Ultraviolettstrahler üblich, um die Keimzahl gering zu halten. Die zunehmende Antibiotika-Resistenz krankenhausspezifischer Keime könnte dabei in naher Zukunft zu einem Revival der altbekannten Technik führen, da sich bei der UV-Desinfektion keine mutationsbedingten Resistenzen entwickeln können.

Eine heute bereits recht verbreitete Methode ist die Trinkwasseraufbereitung mit UV-Strahlung. Dabei wird die Keimzahl im Wasser zuverlässig und in Abhängigkeit zur Dosis stark reduziert. Eine Zugabe von Chemikalien ist grundsätzlich nicht erforderlich. Gerade chlorresistente Krankheitserreger, wie etwa Cryptosporidien, können mit UV-Strahlung inaktiviert werden. Geschmack, Geruch oder der pH-Wert des Mediums werden nicht beeinflusst. Das ist ein wesentlicher Unterschied zur chemischen Behandlung von Trink- oder Prozesswasser.

Im Allgemeinen kommen bei der UV-Desinfektion Niederdruck-Quecksilberdampflampen zum Einsatz (ggf. auch Mitteldruckstrahler), welche Strahlung der Wellenlänge 254 nm emittieren. Kürzere Wellenlängen (kleiner 200 nm) können alle in Wasser befindlichen organischen Stoffe Gesamter organischer Kohlenstoff (TOC) zerlegen und werden zur Herstellung hochreinen Wassers benutzt.

Weitere Anwendungen

Neben der Mikroben-Desinfektion wird UV-Strahlung mit einer Wellenlänge von 254 nm auch zur Virusinaktivierung eingesetzt. Dabei wird ausgenutzt, dass die 254-nm-Strahlung bevorzugt auf die Virusnukleinsäure und weniger auf die Proteine wirkt. Strahlung der Wellenlänge 235 nm wirkt jedoch auch stark zerstörend auf Proteine.

Überdies wird UV-Strahlung zu medizinischen und kosmetischen Zwecken eingesetzt. So wirkt vor allem UV-A-Strahlung auf die Pigmentation (Melaninbildung) der menschlichen Haut, was im Wellness-Bereich zur Bräunung der Haut in einem Solarium angewendet wird. Therapeutisch kann UV-B-Strahlung (bei geeigneter Dosierung) zur Anregung der Vitamin-D-Bildung oder des Zentralnervensystems eingesetzt werden.

In der Chemie wird UV-Strahlung bei der Synthese und der Zersetzung unterschiedlicher Stoffe eingesetzt. Ein Beispiel aus der Photochemie ist die von Synthese von Calciferol (Vitamine D2 und D3). Beispiel für die Zersetzung von Stoffen sind die chlorfreie Bleichung von Zellstoff und der Abbau von Chloraminen bei der Wasseraufbereitung im Schwimmbad.

Lockmittel

Gauklerblumen aufgenommen in sichtbarem Licht (links) und UV-Licht (rechts). Die Abbildung zeigt das für Bienen (nicht aber für Menschen) sichtbare Saftmal

Pflanzen nutzen bestimmte Blütenteile (UV-Male), um diese Insekten anzulocken, wie zum Beispiel Bienen und Hummeln, die UV-Strahlung wahrnehmen können. Die UV-Male der Blüten entstehen durch unterschiedliche Reflektivität für ultraviolettes Licht bestimmter Blütenteile, beispielsweise der Innen- und Außenseite. Dadurch finden Bienen auch bei im sichtbaren Bereich einfarbig aussehenden Blüten das Zentrum. Bei komplizierteren Blütenformen oder schwerer auszubeutenden Blüten kann der Weg zur Nahrungsquelle durch UV-Licht absorbierende Saftmale markiert sein.

Straßenlampen mit hohem Blau- und Ultraviolettanteil (Quecksilberdampflampen) locken Insekten an und beeinflussen das biologische Gleichgewicht. Undichtigkeiten führen zu erhöhtem Wartungsaufwand. Von umherfliegenden Insekten werden Fledermäuse angelockt und sie können dadurch im Straßenverkehr verunglücken. Die Beeinflussung des Verhaltens durch UV-Licht wird auch in Lichtfallen für den Insektenfang, in den UV-reiche Lichtquellen eingesetzt werden, ausgenutzt. Sie werden zur Schädlingsbekämpfung und zur Zählung/Artbestimmung in der Forschung eingesetzt.

Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
 
Seitenende
Seite zurück
©  biancahoegel.de;
Datum der letzten Änderung: Jena, den: 18.01. 2024