Propagator
Propagatoren sind spezielle Greensche Funktionen, also spezielle Lösungsfunktionen bestimmter (partieller) Differentialgleichungen, wie sie in der Physik (etwa in der Quantenelektrodynamik) vorkommen. Sie können als die Wahrscheinlichkeitsamplitude dafür interpretiert werden, dass ein Teilchen von x nach y propagiert. Da sie an zwei Punkten singulär sind, werden die Propagatoren auch Zweipunktfunktionen genannt.
Je nach Differentialgleichung mit ihren Rand- und Anfangsbedingungen ergeben sich verschiedene Propagatoren, beispielsweise etwa der Ein-Elektron-Propagator. Der Begriff des Propagators rührt daher, dass er eine Propagation, d.h. eine Ausbreitung, eine Fortpflanzung bzw. ein Fortschreiten eines Teilchens bzw. einer Welle beschreibt. Die berühmten Feynman-Diagramme sind im Grunde nichts anderes als eine bildlich-geometrische (aber exakte) Darstellung von Propagatoren (Linien) und Vertices (Knotenpunkten).
Die Quantenelektrodynamik ist die quantisierte Form einer Feldtheorie, welche jeweils ein Maxwell- und ein Dirac-Feld enthält, die miteinander gekoppelt sind. Sowohl Elektron- als auch Photon-Propagator werden jeweils durch eine 4×4-Matrix dargestellt, da die zugehörigen Differentialoperatoren ebenfalls aus 4×4-Matrizen bestehen und Propagator bzw. Greenfunktion sowie Differentialoperator zueinander reziprok sind.
Schrödinger-Propagator
Innerhalb der Quantenmechanik
wird die Zeitentwicklung durch den Zeitentwicklungsoperator
beschrieben, welcher im Fall eines zeitunabhängigen Hamiltonoperators
gegeben ist durch:
Die Matrixelemente des Zeitentwicklungsoperators
bezeichnet man auch als Greensche Funktion oder (Schrödinger-)Propagator.
In der Feynmanschen
Formulierung der Quantenmechanik mit Pfadintegralen
findet man den Feynman-Propagator, dessen Normierung
gerade so gewählt wird, dass er mit dem Schrödinger-Propagator übereinstimmt.
Der Propagator liefert die Wahrscheinlichkeitsamplitude,
ein zum Zeitpunkt
bei
lokalisiertes Teilchen zum Zeitpunkt
bei
zu finden.
Zweite Quantisierung
In zweiter quantisierter Form kann die Greenfunktion auch geschrieben werden als
wobei
für den Erwartungswert
des Grundzustands steht. Diese
Form ist übertragbar auf die Vielteilchen-Quantenmechanik, wobei sich nur die
Ermittlung des Erwartungswerts eventuell ändert (Festkörperphysik,
Feynmandiagramm).
Atom- und Kernphysik
In der Atom- und Kernphysik enthält der Grundzustand im betrachteten System bereits reelle Teilchen (Protonen und Neutronen bzw. Elektronen); außerdem existiert ein zusätzliches äußeres Potential. In angeregten Zuständen werden nur die bereits vorhandenen Teilchen in energetisch höhere Zustände des vorhandenen Potentials angehoben.
Meist wird ein Propagator im Ortsraum
verwendet. Es treten oft Propagatoren auf, welche die
Wahrscheinlichkeitsamplitude dafür angeben, dass ein System am Anfang ein
zusätzliches Teilchen im angeregten
Zustand
und am Ende im angeregten Zustand
enthält:
Hierbei ist
der oben beschriebene Grundzustand
der Zeitordnungsoperator
ein Operator, der zur Zeit
ein Teilchen im Zustand
vernichtet
ein Operator, der zur Zeit
ein Teilchen im Zustand
erzeugt.
Quantenfeldtheorie
In der Quantenfeldtheorie ist der Grundzustand identisch zum Vakuum-Zustand: ohne reelle Teilchen, allerdings mit Vakuumfluktuationen. Zumindest für vernachlässigbare Kopplung unterscheidet sich ein angeregter Zustand vom Grundzustand durch die Zahl der (reellen) Teilchen; Teilchen werden sogar als Anregungszustände des zugehörigen Feldes interpretiert.
Meist wird ein Propagator im Impulsraum
verwendet (im Wesentlichen die Fouriertransformierte
des obigen Ausdrucks bezüglich Raum und Zeit; er beschreibt die
Wahrscheinlichkeitsamplitude dafür, dass sich ein Teilchen mit vorgegebener Energie und Impuls bewegt).
Das einfachste Beispiel ist der Propagator für ein skalares Feld,
dessen Anregungen
Teilchen mit Masse
sind:
Hierbei ist
der Viererimpuls des
Teilchens.
Mehrteilchen-Propagatoren
Gerade in der Atom- und Kernphysik werden oft auch Propagatoren verwendet, welche die Ausbreitung nicht nur eines, sondern mehrerer Teilchen gleichzeitig beschreiben. Ein Beispiel dafür ist der Polarisations-Propagator.
Ein verwandtes Konzept sind Vielteilchen-Greenfunktionen; diese beschreiben aber i. A. nicht unbedingt eine Ausbreitung von Teilchen, sondern allgemeinere Konzepte beispielsweise dienen sogenannte Drei-Punkt-Vertex-Funktionen zur Beschreibung der Wechselwirkung eines Elektrons mit einem Photon.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 03.01. 2019