Randbedingung

Randbedingungen (gelegentlich auch als Rahmenbedingungen bezeichnet) sind im Allgemeinen Umstände, die nur mit großem Aufwand oder gar nicht beeinflussbar sind oder sich aus der Problemstellung zwingend ergeben, und daher als gegebene Größen (Datenparameter) betrachtet werden müssen, beispielsweise bei wissenschaftlichen Versuchen oder bei mathematischen Berechnungen.

In vielen Fällen wird der Begriff Randbedingung auch als Synonym zu „Nebenbedingung“ verwendet.

Randbedingungen und Differentialgleichungen

Im Bereich der Differentialgleichungen sind Randbedingungen konkrete Angaben zum Berechnen der Lösungsfunktion u auf einem Definitionsbereich D. Dazu werden die Werte der Funktion auf dem Rand (im topologischen Sinn) von D vorgegeben.

Im einfachsten Fall ist D=(a,b) ein Intervall, und die Randbedingungen sind vorgegebene Funktionswerte u(a)=c_{1};\;u(b)=c_{2}.

Werden hier statt zwei Werten nur an einem Randpunkt des Intervalles – meistens a – Werte für u und zusätzlich für Ableitungen von u vorgegeben, so spricht man von einem Anfangswertproblem und nennt die vorgegebenen Werte seine Anfangsbedingungen.

Partielle Differentialgleichungen betrachtet man meistens auf Sobolew-Räumen. In diesen Räumen werden Funktionen, die bis auf Nullmengen übereinstimmen, als gleich angesehen. Da der Rand eines Gebietes üblicherweise eine Nullmenge ist, ist der Begriff der Randbedingung problematisch. Lösungen für dieses Problem sind sobolewsche Einbettungssätze oder – allgemeiner – Spuroperatoren.

Randwertaufgaben haben nicht immer eine Lösung (siehe Beispiel unten), im Falle ihrer Existenz ist die Lösung nicht in allen Fällen eindeutig. Die Berechnung einer Näherungslösung für eine Randwertaufgabe mit Mitteln der numerischen Mathematik ist oft aufwendig und läuft meist auf die Lösung sehr großer Gleichungssysteme hinaus.

Beispiel

Sei die gegebene Differentialgleichung y''(x)=-y(x). Die Lösungsmenge dieser Gleichung ist a\sin(x)+b\cos(x).

Arten von Randbedingungen

Es gibt unterschiedliche Möglichkeiten, auf dem Rand des betrachteten Gebietes Werte vorzuschreiben:

Künstliche Randbedingungen

Bei unbeschränkten Gebieten erfordert die numerische Lösung üblicherweise eine Einschränkung des Gebiets. Hier sind dann Randbedingungen vorzugeben, die im eigentlichen Problem nicht vorhanden, also künstlich sind.

Siehe auch

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 26.08. 2022