Peptidase

Peptidase
Enzymklassifikation
EC, Kategorie Extern 3.4.-.-,  Hydrolase
Reaktionsart hydrolytische Spaltung
Substrat Peptide
Produkte Peptide, Aminosäuren
3D-Darstellung des katalytischen Zentrums der viralen TEV-Protease (Tobacco Etch Virus nuclear-inclusion-a endopeptidase) mit gebundenem Proteinsubstrat (schwarz). Drei funktional unterschiedliche Aminosäurereste (rot) – die katalytische Triade – stehen im Vordergrund: Asparaginsäure („Acid“ = sauer), Histidin („Base“ = basisch) und Cystein („Nuc“ = nukleophil).[1]

Peptidasen (Kurzform von Peptidbindungshydrolasen) sind Enzyme, die Proteine oder Peptide spalten können. Dabei katalysieren sie die Hydrolyse von Peptidbindungen. Peptidasen werden häufig auch, insbesondere wenn größere Proteine gespalten werden, als Proteasen, Proteinasen oder proteolytische Enzyme bezeichnet.

Vorkommen und Funktion

Peptidasen sind ubiquitär, d.h., sie kommen in allen Geweben und Zellen aller Organismen vor. Man unterscheidet intrazelluläre und extrazelluläre Peptidasen.

Intrazelluläre Peptidasen übernehmen in zahlreichen Zellkompartimenten verschiedenste Aufgaben. So beteiligen sie sich an der posttranslationalen Regulation des Proteingehalts der Zelle:

Extrazelluläre, sezernierte Peptidasen findet man bei tierischen Organismen vor allem im Verdauungstrakt, wo sie die hydrolytische Spaltung von Nahrungsmitteln katalysieren. Sie werden aber auch in anderen extrazellulären Flüssigkeiten gefunden, wo sie zum Teil hoch spezifische Aufgaben übernehmen, wie zum Beispiel die Peptidasen des Blutgerinnungssystems, des Komplementsystems und des fibrinolytischen Systems.

Durch Peptidaseinhibitoren, niedermolekulare Substanzen wie z.B. Pepstatin, Iodacetat oder Phenanthrolin, lassen sich Peptidasen in ihrer Funktion hemmen.

Bedeutung der Peptidasen bei der Tumorbildung

Peptidasen spielen eine wichtige Rolle bei der Metastasierung maligner Tumoren. Für die Entstehung von Metastasen bösartiger solider Tumoren ist es notwendig, dass Tumorzellen die Basalmembran, bestehend aus Kollagen (Typ IV), Laminin und Heparinsulfatproteoglykanen, durchwandern. Für deren Überwindung spielen Peptidasen wie die Serinproteinasen, Cathepsin-Proteinasen und Matrixmetalloproteinasen eine essentielle Rolle.

Klassifikation von Peptidasen

EC-Nomenklatur

Peptidasen werden, wie alle anderen Enzyme auch, mit Hilfe der so genannten EC-Systematik in Gruppen eingeteilt. Peptidasen gehören zur Klasse 3 der Hydrolasen und bilden dort die Unterklasse 3.4. Diese ist wiederum in 14 Unter-Unterklassen unterteilt. Grundlage dieser Nomenklatur ist die Art der katalysierten Reaktion sowie des aktiven Zentrums.
 

Unter-Unterklasse Peptidase-Typ Anzahl der Einträge
3.4.11 Aminopeptidasen 20
3.4.13 Dipeptidasen 11
3.4.14 Dipeptidyl-Peptidasen 8
3.4.15 Peptidyl-Dipeptidasen 3
3.4.16 Serin-Carboxypeptidasen 4
3.4.17 Metallocarboxypeptidasen 19
3.4.18 Cystein-Carboxypeptidasen 1
3.4.19 Omegapeptidasen 11
3.4.21 Serin-Endopeptidasen 77
3.4.22 Cystein-Endopeptidasen 28
3.4.23 Aspartat-Endopeptidasen 34
3.4.24 Metalloendopeptidasen 70
3.4.25 Threonin-Endopeptidasen 1
3.4.99 Endopeptidasen unbekannten Typs 0
  Gesamtanzahl 287

 

Art der katalysierten proteolytischen Reaktion

Typen von Peptidasen

Da Enzyme unterschiedlichste chemische Reaktionen katalysieren können, ist es folgerichtig sinnvoll, sie anhand dieser Reaktionen zu klassifizieren. Eine erste Einteilung der Peptidasen unter enzymologischen Gesichtspunkten ist die in Exopeptidasen und Endopeptidasen

Exopeptidasen spalten die Polypeptidkette von den Enden her. Diejenigen, die am N-Terminus agieren, werden je nach abgespaltenem Fragment als Aminopeptidasen (Abspaltung einer einzelnen Aminosäure), Dipeptidyl-Peptidasen (Freisetzung eines Dipeptids) oder Tripeptidyl-Peptidasen (Freisetzung eins Tripeptids) bezeichnet. Am C-Terminus agierende Exopeptidasen setzen einzelne Aminosäuren (Carboxypeptidasen) oder Dipeptide (Peptidyl-Dipeptidasen) frei. Darüber hinaus gibt es Exopeptidasen, die spezifisch Dipeptide spalten (Dipeptidasen) oder endständige substituierte, zyklisierte oder über Isopeptidbindungen verknüpfte Aminosäuren entfernen können (Omega-Peptidasen).

Endopeptidasen spalten meist an sehr spezifischen Stellen innerhalb der Polypeptidkette. Eine zufriedenstellende Klassifizierung anhand der Spezifität ist nicht möglich. Deshalb erfolgt hier die Unterteilung auf Basis des aktiven Zentrums (siehe unten). Die Länge der zu spaltenden Polypeptidkette kann bei Endopeptidasen in einem weiten Bereich variieren. Meist sind Proteine die Substrate. Es gibt jedoch auch eine Untergruppe von Endopeptidasen, die auf kürzere Peptide als Substrat spezialisiert sind (Oligopeptidasen).

Art des aktiven Zentrums (MEROPS)

Die Unterteilung der Peptidasen nach dem EC-System weist Schwächen auf. So werden die zahlreichen Endopeptidasen durch nur sechs Unter-Unterklassen repräsentiert. Verschiedenartige Peptidasen finden sich dabei in der gleichen Gruppe wieder. Der gravierendste Nachteil ist jedoch, dass strukturelle, evolutionäre Gemeinsamkeiten zwischen den einzelnen Enzymen nicht beachtet werden.

Dazu wurde 1993 von Neil D. Rawlings und Alan J. Barett ein neues Klassifikationsschema, genannt MEROPS, eingeführt, das strukturelle Aspekte sowie evolutionäre Verwandtschaftsbeziehungen auf Basis der Aminosäuresequenz berücksichtigt.

Peptidasen haben, wie alle Enzyme, ein aktives Zentrum, das die jeweilige Reaktion – in diesem Fall die Hydrolyse von Peptidbindungen – ermöglicht. Innerhalb dieser Zentren sind einige bzw. Gruppen von Aminosäuren von entscheidender Bedeutung für die Funktionalität. Daher werden Peptidasen in der MEROPS-Datenbank anhand der chemischen Beschaffenheit ihrer katalytischen, aktiven Zentren in sechs Gruppen klassifiziert.

Funktionelle Aminosäure bzw. aktives Zentrum Hauptartikel Beispiel Inhibitor
A Asparaginsäure Aspartylproteasen Pepsin, Chymosin, Cathepsin E Pepstatin
M Metallo (Metallkomplex) Metalloproteasen Thermolysin, Kollagenasen (bei Wirbeltieren), Carboxypeptidase A u. B EDTA, 1,10-Phenanthrolin
T Threonin Threonylproteasen Proteasom (Lactacystin)
U Unbekannt   gpr-Endopeptidase, Prepilin Typ IV Peptidase keiner der oben genannten

Inhibitoren

Die Peptidaseaktivität kann durch spezifische, körpereigene Inhibitoren, genannt auch Proteaseinhibitoren, gehemmt werden. Ein Beispiel ist die Serpin-Superfamilie mit Alpha-1-Antitrypsin und Alpha-1-Antichymotrypsin, die den Körper vor übermäßigen Wirkungen seiner eigenen entzündungsfördernden Peptidasen schützen. Zur Serpinfamilie gehören auch Neuroserpin[2] und Protease nexin-1,[3] die im zentralen Nervensystem neuroprotektiv wirken.

Der C1-Esterase-Inhibitor, schützt vor übermäßiger Aktivierung des Komplementsystems, Antithrombin III vor übermäßiger Blutgerinnung. Der Plasminogen-Aktivator-Inhibitor-1 hemmt die Fibrinolyse und schützt damit vor unzureichender Blutgerinnung. Zu den natürlichen Peptidaseinhibitoren gehört auch die Familie der Lipocaline, die bei der Zellproliferation und Zelldifferenzierung eine Rolle spielen. Es wurde festgestellt, dass an Lipocalin gebundene lipophile Liganden tumorale Peptidasen hemmen können.

Synthetische Peptidaseinhibitoren werden in der antiretroviralen Therapie eingesetzt. Einige Viren, darunter HIV, sind in ihrem Vermehrungszyklus auf Peptidasen angewiesen. Daher werden Peptidaseinhibitoren als antivirale Therapeutika entwickelt.[4]

Einzelnachweise

  1. Thomas Shafee: Evolvability of a viral protease: experimental evolution of catalysis, robustness and specificity. Dissertation, University of Cambridge, 2014 Extern (PDF).
  2. V. Gupta et al.: Extern Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell–cell interactions in the pathophysiology of neurological disease in Cellular and Molecular Life Sciences (2022) Band 79 S. 172
  3. Denis Monard: Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. In: Trends in Neurochemistry Band 11, Ausgabe 12, 1988, S. 541–544, doi:Extern 10.1016/0166-2236(88)90182-8.
  4. Xose S. Puente, Carlos López-Otín: A Genomic Analysis of Rat Proteases and Protease Inhibitors. In: Genome Research. Band 14, Nr. 4, 14. April 2004, doi:Extern 10.1101/gr.1946304, Extern PMID 15060002, Extern PMC 383305 (freier Volltext).
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 07.11. 2024