Hypergeometrische Verteilung

Die hypergeometrische Verteilung ist eine Wahrscheinlichkeitsverteilung in der Stochastik. Sie ist univariat und zählt zu den diskreten Wahrscheinlichkeitsverteilungen. In Abgrenzung zur allgemeinen hypergeometrischen Verteilung wird sie auch klassische hypergeometrische Verteilung genannt.
Einer dichotomen Grundgesamtheit werden
in einer Stichprobe zufällig
Elemente ohne Zurücklegen entnommen. Die hypergeometrische Verteilung
gibt dann Auskunft darüber, mit welcher Wahrscheinlichkeit
in der Stichprobe eine bestimmte Anzahl von Elementen vorkommt, die die
gewünschte Eigenschaft haben. Bedeutung kommt dieser Verteilung daher etwa bei
Qualitätskontrollen
zu.
Die hypergeometrische Verteilung wird modellhaft dem Urnenmodell ohne
Zurücklegen zugeordnet (siehe auch Kombination
ohne Wiederholung). Man betrachtet speziell in diesem Zusammenhang eine Urne
mit zwei Sorten Kugeln. Es werden
Kugeln ohne Zurücklegen entnommen. Die Zufallsvariable
ist die Zahl der Kugeln der ersten Sorte in dieser Stichprobe.
Die hypergeometrische Verteilung beschreibt also die Wahrscheinlichkeit
dafür, dass bei
gegebenen Elementen („Grundgesamtheit des Umfangs
“),
von denen
die gewünschte Eigenschaft besitzen, beim Herausgreifen von
Probestücken („Stichprobe des Umfangs
“)
genau
Treffer erzielt werden, d.h. die Wahrscheinlichkeit für
Erfolge in
Versuchen.
Beispiel 1: In einer Urne befinden sich 30 Kugeln, 20 davon sind blau, also sind 10 nicht blau. Wie hoch ist die Wahrscheinlichkeit p, bei einer Stichprobe von zwanzig Kugeln genau dreizehn blaue Kugeln zu ziehen (ohne Zurücklegen)? Antwort: p = 0.3096. Dies entspricht dem blauen Balken bei k = 13 im Diagramm "Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für n = 20".
Beispiel 2: In einer Urne befinden sich 45 Kugeln, 20 davon sind gelb. Wie hoch ist die Wahrscheinlichkeit p, bei einer Stichprobe von zehn Kugeln genau vier gelbe Kugeln zu ziehen? Antwort: p = 0.269. Das Beispiel wird unten durchgerechnet.
Definition
Die hypergeometrische Verteilung ist abhängig von drei Parametern:
- der Anzahl
der Elemente einer Grundgesamtheit.
- der Anzahl
der Elemente mit einer bestimmten Eigenschaft in dieser Grundmenge (die Anzahl möglicher Erfolge).
- der Anzahl
der Elemente in einer Stichprobe.
Die Verteilung gibt nun Auskunft darüber, wie wahrscheinlich es ist, dass
sich
Elemente mit der zu prüfenden Eigenschaft (Erfolge bzw. Treffer) in der
Stichprobe befinden. Der Ergebnisraum
ist daher
.
Eine diskrete Zufallsgröße
unterliegt der hypergeometrischen Verteilung mit den Parametern
,
und
,
wenn sie die Wahrscheinlichkeiten
für
besitzt. Dabei bezeichnet
den Binomialkoeffizienten
„
über
“.
Man schreibt dann
oder
.
Die Verteilungsfunktion
gibt dann die Wahrscheinlichkeit an, dass höchstens
Elemente mit der zu prüfenden Eigenschaft in der Stichprobe sind. Diese kumulierte
Wahrscheinlichkeit ist die Summe
.
Alternative Parametrisierung
Gelegentlich wird auch als Wahrscheinlichkeitsfunktion
verwendet. Diese geht mit
und
in die obige Variante über.
Eigenschaften der hypergeometrischen Verteilung
Symmetrien
Es gelten folgende Symmetrien:
- Vertauschung von gezogenen Kugeln und Erfolgen:
- Vertauschung von Erfolgen und Misserfolgen:
Erwartungswert
Der Erwartungswert
der hypergeometrisch verteilten Zufallsvariable
ist
.
Modus
Der Modus der hypergeometrischen Verteilung ist
.
Dabei ist
die Gaußklammer.
Varianz
Die Varianz
der hypergeometrisch verteilten Zufallsvariable
ist
,
wobei der letzte Bruch der so genannte Korrekturfaktor (Endlichkeitskorrektur) beim Modell ohne Zurücklegen ist.
Schiefe
Die Schiefe der hypergeometrischen Verteilung ist
.
Charakteristische Funktion
Die charakteristische Funktion hat die folgende Form:
Wobei
die gaußsche
hypergeometrische Funktion bezeichnet.
Momenterzeugende Funktion
Auch die momenterzeugende Funktion lässt sich mittels der hypergeometrischen Funktion ausdrücken:
Wahrscheinlichkeitserzeugende Funktion
Die wahrscheinlichkeitserzeugende Funktion ist gegeben als
Beziehung zu anderen Verteilungen
Beziehung zur Binomialverteilung
Im Gegensatz zur Binomialverteilung
werden bei der hypergeometrischen Verteilung die Stichproben nicht wieder in das
Reservoir zur erneuten Auswahl zurückgelegt. Ist der Umfang
der Stichprobe im Vergleich zum Umfang
der Grundgesamtheit relativ klein (etwa
),
unterscheiden sich die durch die Binomialverteilung bzw. die hypergeometrische
Verteilung berechneten Wahrscheinlichkeiten nicht wesentlich voneinander. In
diesen Fällen wird dann oft die Approximation durch die mathematisch einfacher
zu handhabende Binomialverteilung vorgenommen.
Beziehung zur Pólya-Verteilung
Die hypergeometrische Verteilung ist ein Spezialfall der Pólya-Verteilung (wähle IMG class="text" style="width: 7.07ex; height: 2.34ex; vertical-align: -0.5ex;" alt="c=-1" src="/svg/ed535569ecdb4d4ad9352903f57ff19e6f80cb63.svg">).
Beziehung zum Urnenmodell
Die hypergeometrische Verteilung entsteht aus der diskreten
Gleichverteilung durch das Urnenmodell.
Aus einer Urne mit insgesamt
Kugeln sind
eingefärbt und es werden
Kugeln gezogen. Die hypergeometrische Verteilung gibt für
die Wahrscheinlichkeit an, dass
gefärbte Kugeln gezogen werden. Andernfalls kann auch mit der Binomialverteilung
in der Praxis modelliert werden. Siehe hierzu auch das Beispiel.
Beziehung zur multivariaten hypergeometrischen Verteilung
Die multivariate hypergeometrische Verteilung ist eine Verallgemeinerung der hypergeometrischen Verteilung. Sie beantwortet die Frage nach der Anzahl der gezogenen Kugeln einer Farbe aus einer Urne, wenn diese mehr als zwei unterscheidbare Farben von Kugeln enthält. Für zwei Farben stimmt sie mit der hypergeometrischen Verteilung überein.
Beispiele
Diverse Beispiele
In einem Behälter befinden sich 45 Kugeln, davon sind 20 gelb. Es werden 10 Kugeln ohne Zurücklegen entnommen.
Die hypergeometrische Verteilung gibt die Wahrscheinlichkeit dafür an, dass genau x = 0, 1, 2, 3, …, 10 der entnommenen Kugeln gelb sind.
Ein Beispiel für die praktische Anwendung der hypergeometrischen Verteilung ist das Lotto: Beim Zahlenlotto gibt es 49 nummerierte Kugeln; davon werden bei der Auslosung 6 gezogen; auf dem Lottoschein werden 6 Zahlen angekreuzt.
gibt die Wahrscheinlichkeit dafür an, genau x =
0, 1, 2, 3, …, 6 „Treffer“ zu erzielen.
- Wahrscheinlichkeit beim deutschen Lotto
-
in linearer Auftragung
-
in logarithmischer Auftragung
Ausführliches Rechenbeispiel für die Kugeln
Zu dem oben aufgeführten Beispiel der farbigen Kugeln soll die Wahrscheinlichkeit ermittelt werden, dass genau 4 gelbe Kugeln resultieren.
Gesamtanzahl der Kugeln | |
Anzahl mit der Eigenschaft „gelb“ | |
Umfang der Stichprobe | |
Davon angestrebt gelb |
Also .
Die Wahrscheinlichkeit ergibt sich aus:
- Anzahl der Möglichkeiten, genau 4 gelbe (und damit genau 6 violette)
Kugeln auszuwählen
- geteilt durch
- Anzahl der Möglichkeiten, genau 10 Kugeln beliebiger Farbe auszuwählen
Es gibt
Möglichkeiten, genau 4 gelbe Kugeln auszuwählen.
Es gibt
Möglichkeiten, genau 6 violette Kugeln auszuwählen.
Da jede „gelbe Möglichkeit“ mit jeder „violetten Möglichkeit“ kombiniert werden kann, ergeben sich
Möglichkeiten für genau 4 gelbe und 6 violette Kugeln.
Es gibt insgesamt
Möglichkeiten, 10 Kugeln zu ziehen.
Wir erhalten also die Wahrscheinlichkeit
,
das heißt, in rund 27 Prozent der Fälle werden genau 4 gelbe (und 6 violette) Kugeln entnommen.
Alternativ kann das Ergebnis auch mit folgender Gleichung gefunden werden
Es befinden sich in der Stichprobe vom Umfang
nämlich 4 gelbe Kugeln. Die restlichen gelben Kugeln (16) befinden sich in den
35 übriggebliebenen Kugeln, die nicht zur Stichprobe gehören.
Zahlenwerte zu den Beispielen
|
|
x | Anzahl möglicher Ergebnisse |
Wahrscheinlichkeit in % |
---|---|---|
0 | 6.096.454 | 43,5965 |
1 | 5.775.588 | 41,3019 |
2 | 1.851.150 | 13,2378 |
3 | 246.820 | 1,765 |
4 | 13.545 | 0,0969 |
5 | 258 | 0,0018 |
6 | 1 | 0,0000072 |
∑ | 13.983.816 | 100,0000 |
Erwartungswert | 0,7347 | |
Varianz | 0,5776 |



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 03.02. 2022