Laplace-Runge-Lenz-Vektor
Der Laplace-Runge-Lenz-Vektor (in der Literatur auch
Runge-Lenz-Vektor, Lenzscher Vektor etc., nach Pierre-Simon
Laplace, Carl
Runge und Wilhelm
Lenz) ist eine Erhaltungsgröße der Bewegung in einem 1/r-Potential (Coulomb-Potential, Gravitationspotential),
d.h., er ist auf jedem Punkt der Bahn gleich (Erhaltungsgröße). Er zeigt
vom Brennpunkt der Bahn (Kraftzentrum) zum nächstgelegenen Bahnpunkt (Perihel
bei der Erdbahn) und hat somit eine Richtung parallel zur großen Bahnachse. Sein
Betrag ist mit der Exzentrizität
der Bahn verknüpft. Der Laplace-Runge-Lenz-Vektor ermöglicht daher die elegante
Herleitung der Bahnkurve
eines Teilchens (z.B. Planet im Keplerproblem,
-Teilchen
gestreut an Atomkern) in diesem Kraftfeld, ohne eine einzige Bewegungsgleichung
lösen zu müssen.
In der klassischen Mechanik wird der Vektor hauptsächlich benutzt, um die Form und Orientierung der Umlaufbahn eines astronomischen Körpers um einen anderen zu beschreiben, etwa die Bahn eines Planeten um seinen Stern.
Auch in der Quantenmechanik des Wasserstoffatoms spielt der Vektor als Laplace-Runge-Lenz- oder Laplace-Runge-Lenz-Pauli-Operator eine Rolle.
Definition

Sei
ein radialsymmetrisches anziehendes Potential,
das mit einer Proportionalitätskonstante
umgekehrt proportional zum relativen Abstand
zweier Objekte
ist. Dann ist der Laplace-Runge-Lenz-Vektor
definiert als
,
wobei
den Impuls des Körpers
seinen Drehimpuls,
seine Masse und
den radialen Einheitsvektor
bezeichnet.
Beweis der Erhaltung
Direkte Rechnung
In einem System mit 1/r-Potential gilt Isotropie. Daher gilt Drehimpulserhaltung mit der Konsequenz, dass die Bewegung in einer Ebene senkrecht zum Drehimpuls stattfindet und es eine einfache Beziehung zwischen Drehimpuls und Winkelgeschwindigkeit gibt:
Die Winkelgeschwindigkeit bestimmt die Zeitableitung des zweiten Terms von
,
denn ein Einheitsvektor kann sich nur durch Drehung ändern:
Die Kraft ist nach dem 2. Newtonschen Gesetz die Änderungsrate des Impulses:
Für den ersten Term von
gilt damit
Durch Subtrahieren folgt nun die Konstanz des Runge-Lenz-Vektors:
Folgerung aus dem Noether-Theorem
Obwohl in der Literatur teilweise vertreten wird, es existiere zum
Laplace-Runge-Lenz-Vektor keine zugehörige Symmetrietransformation der
Lagrangefunktion,
kann diese leicht angegeben werden.
Die Lagrangefunktion eines attraktiven -Potentials
lautet:
Die der Erhaltung des Laplace-Rung-Lenz-Vektors zugrunde liegende Symmetrie zeigt sich unter der Variablentransformation
mit drei infinitesimalen Parametern .
Mithilfe der Bewegungsgleichungen kann die entsprechende Transformation der
Geschwindigkeiten als
identifiziert werden. Durch Einsetzen in die Lagrangefunktion und Taylor-Entwicklung
bis zur Ordnung
zeigt sich, dass sich diese wie
verhält, wobei der zusätzliche Term eine totale Zeitableitung ist und daher die Wirkung des Systems invariant lässt. Aus dem Noether-Theorem folgt, dass die drei Komponenten des Vektors
erhalten sind.
Erhaltung im Hamilton-Formalismus
Mit der Hamilton-Funktion des Systems
folgt für die partiellen Ableitungen der Hamilton-Funktion und des Laplace-Runge-Lenz-Vektors nach den Koordinaten und Impulsen
und nach den Hamiltonschen Bewegungsgleichungen
Herleitung der Bahnkurve
Hierfür ist normalerweise, d.h., wenn man das Arbeiten mit der Energie
als Erhaltungsgröße vorzieht, eine aufwändige Integration mit mehreren
Substitutionen nötig. Dagegen folgt aus der Multiplikation des
Runge-Lenz-Vektors mit
nun einfach nach der Kosinusbeziehung des Skalarprodukts (pfeillose Buchstaben
kennzeichnen stets die Beträge des zugehörigen Vektors):
Hierbei wurden die Zyklizität des Spatproduktes und die Drehimpulsdefinition
genutzt.
bezeichnet den Winkel zwischen Runge-Lenz- und Ortsvektor.
Durch Umschreiben entsteht eine Kegelschnittgleichung in Polarkoordinaten:
,
wobei der Term
als die numerische Exzentrizität
des Kegelschnitts
,
die die Bahnform Kreis
(
),
Ellipse
(
),
Parabel
(
)
oder Hyperbel
(
)
bestimmt, identifiziert werden kann.

Weiterhin ist ebenfalls die Herleitung des Hodographe
der Keplerbahn mithilfe des Laplace-Runge-Lenz-Vektors möglich. Da der
Drehimpulsvektor senkrecht auf der Bewegungsebene steht, ,
folgt nach
mit der Lagrange-Identität und einer zyklischen Permutation des Spatprodukts
.
Bei einer Wahl des Koordinatensystems, sodass der der Drehimpuls in -Richtung
zeigt,
,
und der dazu orthogonale Laplace-Runge-Lenz-Vektor in
-Richtung,
,
folgt:
Der Hodograph ist somit ein Kreis mit Radius ,
der um
vom Zentrum der Kraft verschoben ist. Für die Schnittpunkte des Hodographen mit
der
-Achse
gilt:
Sie sind somit unabhängig vom Drehimpuls und vom Laplace-Runge-Lenz-Vektor.
Eigenschaften
- Der Runge-Lenz-Vektor liegt in der Bahnebene, denn er steht senkrecht zum Drehimpulsvektor:
- Der Runge-Lenz-Vektor zeigt vom Kraftzentrum der Bahn (einem der beiden
Brennpunkte) zum Perizentrum, d.h. zentrumnächsten Punkt der Bahn. Dies
folgt sofort aus obiger Bahngleichung, da
den Winkel zwischen Orts- und Runge-Lenz-Vektor darstellt und
minimal ist für maximalen Nenner, d.h.
.
- Der Runge-Lenz-Vektor hat als Betrag das
-Fache der numerischen Exzentrizität der Bahnkurve. Dies wurde bereits bei der Herleitung derselben gezeigt.
- Alle drei Komponenten des Laplace-Runge-Lenz-Vektors sind Erhaltungsgrößen. Da sein Betrag bereits durch die anderen Erhaltungsgrößen Drehimpuls und Energie und seine Lage durch die orthogonalität zum Drehimpulsvektor vorgegeben sind, liefert der Laplace-Runge-Lenz-Vektors nur eine unabhängige Erhaltungsgröße. Das Kepler-Problem hat daher fünf unabhängige Erhaltungsgrößen (Energie, 3 Komponenten des Drehimpulsvektors, Orientierung des Laplace-Runge-Lenz-Vektors) für sechs Anfangsbedingungen; es ist daher ein maximal superintegrables System.
Periheldrehung bei Abweichungen vom Kepler-Potential
Die Erhaltung des Runge-Lenz-Vektors impliziert, dass die Ellipsen der Planetenbewegung im Kepler-Potential eine feststehende Orientierung im Raum haben.
Bei kleinen Abweichungen vom 1/r-Potential, z.B. durch Anwesenheit
anderer Planeten im Sonnensystem oder infolge der Einsteinschen
Relativitätstheorien, kommt es zu einer langsamen Drehung der Bahnachse (Periheldrehung).
Wenn eine Abweichung so klein ist, dass ihr Quadrat vernachlässigt werden kann,
so ist die Störung der Kepler-Bahn mit Hilfe des Runge-Lenz-Vektors elementar
berechenbar.
Es sei
das Störpotential, das zum Kepler-Potential addiert wird. Für den
Runge-Lenz-Vektor findet man (vgl. Beweis der Erhaltung)
Die z-Richtung steht dabei senkrecht zur Bahnebene. Offenbar ist die Bewegung des Runge-Lenz-Vektors nicht zu jedem Zeitpunkt eine Drehung. Eine Drehung ergibt sich aber, wenn infinitesimale Änderungen über einen Umlauf integriert werden. Dafür findet man zunächst
Da quadratische Effekte von
vernachlässigbar sein sollen, kann für
die ungestörte Bahnkurve eingesetzt werden. Der radiale Einheitsvektor, zerlegt
in Komponenten parallel und senkrecht zur Bahnachse, ist
Bei der Kepler-Ellipse ist
eine Funktion von
,
daher ergibt das Integral über eine Periode mit dem Faktor
für jedes Störpotential
null. Es bleibt nur
wobei
eingesetzt wurde und der Drehwinkel
durch folgenden Ausdruck gegeben ist:
Bei der Störung einer Planetenbahn durch die Anwesenheit anderer Planeten ist
das Störpotential nicht unmittelbar von der Form ,
erhält aber diese Form durch Mittelung über viele Umläufe von Planeten in einer
gemeinsamen Bahnebene.
Quantenmechanik
In der Quantenmechanik kann im Wasserstoffproblem als Analogon zum Laplace-Runge-Lenz-Vektor der hermitesche Operator
definiert werden, wobei
der Impulsoperator,
der Drehimpulsoperator und
der Ortsoperator sind, sowie
die Kernladungszahl,
die Feinstrukturkonstante,
das reduzierte Plancksche Wirkungsquantum,
die Lichtgeschwindigkeit und
die Masse des Elektrons sind.
Insbesondere ist in der Quantenmechanik ,
da der Kommutator
zwischen Impuls- und Drehimpulsoperator nicht verschwindet. Der Hamilton-Operator des
Coulomb-Problems
ist
und aus der Definition des Drehimpulsoperators folgt die Kommutatorrelation
für alle Komponenten des Laplace-Runge-Lenz-Operators. Da dieser selbst nicht zeitabhängig ist, folgt aus den Heisenbergschen Bewegungsgleichungen für quantenmechanische Operatoren
.
Aus der Vertauschbarkeit des Hamilton-Operators und des Laplace-Runge-Lenz-Operators folgt, dass beide einen Satz gemeinsamer Eigenzustände besitzen und insbesondere ebenfalls der Hamilton-Operator und das Quadrat des Laplace-Runge-Lenz-Operators.
Die Kommutatorrelationen für die einzelnen Komponenten des Laplace-Runge-Lenz-Operators lauten
und für den Kommutator der Komponenten des Laplace-Runge-Lenz-Operator und des Drehimpulsoperators
mit dem Levi-Civita-Symbol
.
Insbesondere sind
,
also existiert ein Satz gemeinsamer Eigenzustände zu beiden Sätzen der
Operatoren
und
.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 09.02. 2020