Indikatorfunktion
Die Indikatorfunktion (auch charakteristische Funktion genannt) ist eine Funktion in der Mathematik, die sich dadurch auszeichnet, dass sie nur einen oder zwei Funktionswerte annimmt. Sie ermöglicht es, komplizierte Mengen mathematisch präzise zu fassen und auf ihnen Funktionen wie zum Beispiel die Dirichlet-Funktion zu definieren.
Definition

In der Literatur finden sich mehrere Schreibweisen für die charakteristische
Funktion. Neben der hier verwendeten mittels
sind ebenfalls die Schreibweisen
und
gebräuchlich.[1]
Reellwertige charakteristische Funktion
Gegeben sei eine Grundmenge
und eine Teilmenge
.
Die Funktion
definiert durch
heißt dann die charakteristische Funktion oder
Indikatorfunktion der Menge .
Die Zuordnung
liefert eine Bijektion
zwischen der Potenzmenge
und der Menge aller Funktionen von
in die Menge
Erweiterte charakteristische Funktion
In der Optimierung wird die charakteristische Funktion teils als erweiterte Funktion
definiert. Hier heißt dann die Funktion
definiert durch
die charakteristische Funktion oder Indikatorfunktion der Menge .
Sie ist eine echte
Funktion, wenn
nicht leer ist.
Partielle charakteristische Funktion
Bei der Bildung der partiellen
charakteristischen Funktion wird die Definitionsmenge
auf
eingeschränkt; im Sinne von partiellen
Funktionen kann man sie also wie folgt beschreiben:
Verwendung der unterschiedlichen Definitionen
Die reellwertige charakteristische Funktion wird häufig in der Integrationstheorie
und in der Stochastik verwendet, da sie
es ermöglicht, Integrale der Funktion
über die Menge
durch Integrale von
über die Grundmenge zu ersetzen:
.
Dadurch lassen sich zum Beispiel oft Fallunterscheidungen vermeiden.
Die erweiterte charakteristische Funktion wird in der Optimierung verwendet, um Funktion auf Teilbereiche einzuschränken, auf denen sie gewisse gewünschte Eigenschaften wie z. B. Konvexität besitzen, oder um Restriktionsmengen zu modellieren.
Die partielle charakteristische Funktion findet Verwendung in der Berechenbarkeitstheorie.
Eigenschaften und Rechenregeln der reellwertigen charakteristischen Funktion
- Die Menge
ist durch ihre charakteristische Funktion eindeutig bestimmt. Es gilt
-
.
- Für
folgt also aus der Gleichheit
die Gleichheit
der Mengen.
- Die charakteristische Funktion
der leeren Menge ist die Nullfunktion. Die charakteristische Funktion
der Grundmenge ist die konstante Funktion mit dem Wert 1.
- Es seien Mengen
gegeben. Dann gilt für die Schnittmenge
-
- und für die Vereinigungsmenge
.
- Für die Differenzmenge
ist
.
- Insbesondere gilt für das Komplement
- >
.
- >
Verwendung zur Berechnung von Erwartungswert, Varianz und Kovarianz
Für einen gegebenen Wahrscheinlichkeitsraum
und ein Ereignis
ist die Indikatorfunktion
eine bernoulliverteilte
Zufallsvariable.
Insbesondere gilt für den Erwartungswert
und für die Varianz
.
Die Varianz von
nimmt also ihren maximalen Wert
im Fall
an.
Ist zusätzlich ,
dann gilt für die Kovarianz
.
Zwei Indikatorvariablen sind also genau dann unkorreliert, wenn die zugehörigen Ereignisse stochastisch unabhängig sind.
Sind
beliebige Ereignisse, dann gibt die Zufallsvariable
die Anzahl derjenigen Ereignisse an, die eingetreten sind. Wegen der Linearität des Erwartungswerts gilt dann
.
Diese Formel gilt auch dann, wenn die Ereignisse abhängig sind. Sind sie zusätzlich paarweise unabhängig, dann gilt nach der Gleichung von Bienaymé für die Varianz
.
Im allgemeinen Fall kann die Varianz über die Formel
bestimmt werden.
Siehe auch
Anmerkungen
- ↑
Die Bezeichnung
wird aber auch für die Identitätsrelation bzw. -abbildung verwendet und kann daher leicht zu Verwechselungen führen.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 28.02. 2021