Oloid
Anzahl der Ecken | |
Anzahl der Kanten | |
Kantenlänge | |
Anzahl der Flächen | |
Oberfläche | |
Volumen | |
Radius der erzeu- genden Kreise |
|
Seitenlänge des zerlegten Würfels |
![](bilder/Oloid_structure.svg.png)
Das Oloid (auch Polysomatoloid genannt) ist ein geometrischer Körper, der 1929 vom Bildhauer und Maschinenbauer Paul Schatz zusammen mit dem umstülpbaren Würfel entdeckt wurde. Es kann definiert werden als die konvexe Hülle zweier gleich großer, sich senkrecht schneidender Kreise, deren Mittelpunkte einen Abstand zueinander haben, der gleich ihrem Radius ist. Es hat keine Ecken, zwei Kanten, nämlich je einen 240°-Bogen der beiden sich schneidenden Kreise, und ist ansonsten glatt. Es besitzt Eigenschaften, die es deutlich von anderen Körpern unterscheiden, und gilt als Plausibilitätshinweis für die von Schatz begründete Inversionskinematik.
Kontext
![](bilder/220px-OLOID.jpg)
(6 Tetraeder mit roten Außenseiten)
Die Enden der Diagonale (weiße Linie konstanter Länge) bewegen sich auf zwei gekreuzten Kreisbögen (blau und rot) hin und her, die Linie selbst bewegt sich auf einer Regelfläche.
![](bilder/220px-Oloid_(2_Kreisscheiben_und_Geradenschar_der_Regelflaeche).jpg)
Paul Schatz entdeckte in den 1920er Jahren eine Zerlegung des Würfels in drei Teile, von denen einer aus sechs unregelmäßigen Tetraedern besteht. Verbindet man diese gelenkig an ihren je zwei im Würfel benachbarten Kanten, so entsteht eine komplett umstülpbare Kette.
Die ausgebreitete Kette hat zwischen gegenüberliegenden Gelenken drei gleich lange Diagonalen. Das sind die Raumdiagonalen des ursprünglichen Würfels, die auch während des Umstülpens erhalten bleiben und somit konstante Länge haben. Schatz beobachtete den Weg, den eine solche Diagonale beim Umstülpen der Kette nimmt, und entdeckte dabei das Oloid. Fixiert man eines der Tetraeder und beobachtet den Weg der ihm gegenüberliegenden Diagonale (Abbildung links), so erkennt man, dass die von ihr überstrichene Fläche eine Regelfläche und die Oberfläche eines geometrischen Körpers ist, den Schatz Oloid nannte.
Die erste Beschreibung der mathematischen Eigenschaften aus analytischer Sicht erfolgte 1997.
Das Oloid ist Teil des Oloid-Rührers, der zum Umwälzen und Belüften von Wasser, z. B. in der Abwasserreinigung und Gewässersanierung, eingesetzt wird. Eine weitere Anwendungsform als Alternative zum Schiffspropeller hat bislang nicht das Stadium von Prototypen und Versuchen überschreiten können.
Eigenschaften
![](bilder/220px-Developed-oloid-surface.svg.png)
Das Oloid ist einer der wenigen bekannten Körper, die über ihre gesamte Oberfläche abrollen. Seine Oberfläche ist als Ganzes eine abwickelbare Fläche. Im Unterschied zum Kegel oder Zylinder lässt sich die komplette Oberfläche des Oloids (und nicht nur eine Mantelfläche) knickfrei aus einem einzelnen Stück Pappe herstellen.
Setzt man es auf eine Schräge, so rollt es in einer taumelnden Bewegung hinunter, ohne dabei jemals über seine Kanten zu poltern. Bemerkenswert ist, dass die Oberfläche genau so groß ist wie die einer Kugel, die den gleichen Radius hat wie die beiden das Oloid erzeugenden Kreise.
Der Winkel an den Mittelpunkten der Kanten beträgt 60°. Betrachtet man das Oloid senkrecht zu den beiden Kanten, so bilden die Konturen im Querschnitt exakt ein Quadrat, was bei handwerklich hergestellten Oloiden eine Qualitätseinschätzung möglich macht, da leichte Unsymmetrien schnell erkannt werden.
Mathematik
![](bilder/220px-Oloid-rainbow.jpg)
Im Weiteren sei
der Radius der erzeugenden Kreise. Die beiden Kanten haben jeweils eine Länge
von
.
Die Oberfläche ist eine Regelfläche: zu jedem Punkt
gibt es (bis auf Spiegelung) genau einen Punkt
auf der anderen Kante, sodass die Verbindungsstrecke komplett auf der Oberfläche
des Oloids liegt. Die Länge dieser Strecke ist für alle Punkte
,
eben die Länge der drei Raumdiagonalen der Tetraederkette und des zerlegten
Würfels, der somit eine Seitenlänge von
hat.
Die Seitenlänge des oben erwähnten Quadrats, das die Konturen in einem
bestimmten Blickwinkel bilden, ist ,
womit der minimale Quader, der das Oloid umfasst,
die Maße
hat.
Konstruktion
Für eine Einbettung
in den dreidimensionalen
euklidischen
Raum setze den Mittelpunkt des liegenden Kreises auf den Ursprung, den des
stehenden Kreises auf .
Damit ist für
der Punkt
auf der liegenden Kante gegeben durch
und
.
Der Satz
des Pythagoras liefert dann die beiden Punkte auf der stehenden Kante, die
zu
einen Abstand von
haben:
mit
und
.
Je nach Vorzeichen
ist dies ein Punkt auf der oberen oder unteren Hälfte des Oloids. Für
theoretische Betrachtungen ist aufgrund der Symmetrien im Oloid eine
Einschränkung des Parameterbereichs von
auf beispielsweise
(also auf ein Viertel der Oberfläche und weiter auf ein Achtel mittels
Festlegung des Vorzeichens in
)
möglich. Auch zur Visualisierung kann dies sinnvoll sein. Damit umgeht man das
singuläre Verhalten einiger der relevanten Funktionen an den Intervallgrenzen,
also den Endpunkten der liegenden Kante.
Parametrisierung der Oberfläche
Mit Hilfe der Geradengleichung
gelangt man nun zu folgender Parametrisierung der Oberfläche:
mit
Für
ist dies ein Punkt auf der liegenden Kante, für
auf der Stehenden. Eine Koordinatendarstellung ist durch die unten stehende
algebraische Fläche gegeben.
Parametrisierung des Volumens
Aus der Oberflächenparametrisierung erhält man eine Parametrisierung für den
vollen Körper, indem man nur
mit einem Höhenparameter
multipliziert.
mit
Für
ergibt dies die Oberfläche, für
die waagrechte Schnittfläche durch die Mitte des Oloids. Zu beachten ist, dass
einen Teil der Symmetrien bricht, weshalb hier der Definitionsbereich von
nur noch auf die Hälfte (und nicht mehr auf ein Viertel) eingeschränkt werden
kann.
Oberflächeninhalt
Die Größe der Oberfläche lässt sich mit dem Oberflächenintegral
exakt
berechnen. Dazu bildet man den euklidischen
Betrag des Kreuzprodukts
der sechs partiellen
Ableitungen der Oberflächenparametrisierung und integriert dies nach
und
.
Es ergibt sich, dass die Oberfläche gerade eine Größe von
hat – ebenso wie eine Kugel
vom Radius
.
Mit der obigen Parametrisierung der Oberfläche und den erwähnten
Einschränkungen ergibt sich für den Oberflächeninhalt :
Die Integraltransformation beruht auf ,
womit man eine Stammfunktion
erhält, bei der mit den entsprechenden Grenzen nur zwei Terme übrigbleiben. Für
Arkussinus
gilt:
(da
)
und der letzte Schritt ist die Funktionalgleichung
des Arkustangens.
Volumeninhalt
Im Gegensatz dazu enthält jede bisher bekannte Volumenformel für das Oloid
mehrere elliptische
Integrale, die sich nur numerisch
auswerten lassen. Beim analytischen Ansatz mit dem Volumenintegral des
Betrags der Jacobideterminante
der Volumenparametrisierung sorgt die Wahl von
für eine Vereinfachung in den ersten Schritten: Da nur
von
abhängt, sind zwei der partiellen Ableitungen gleich null. Damit entfallen zwei
Drittel der Terme in der Determinantenberechnung,
insbesondere taucht kein
mehr auf. Die Determinante ist innerhalb der Grenzen stets positiv und damit
gleich ihrem Betrag.
Dabei lassen sich die unvollständigen elliptischen Integrale erster und
zweiter Art (
und
)
durch die korrespondierenden vollständigen elliptischen Integrale (
und
)
ausdrücken, weil die Argumente über den Arkuskosekans
zusammenhängen.
Die irrationale Konstante 3,052418468… lässt sich zwar beliebig genau berechnen, aber es sind keine algebraischen Zusammenhänge zu anderen Konstanten bekannt und auch nicht, ob sie transzendent ist.
Die Oloid-Fläche
Das Oloid kann als Teil einer algebraischen
Fläche vom Grad 8 (also einer Oktik)
gesehen werden.
Die Lösungsmenge
der definierenden Polynomgleichung
liefert die Oberfläche eines Oloids mit Radius
,
eingebettet in den dreidimensionalen
Raum mit den Koordinatenachsen
und
,
der Mittelpunkt der Fläche liegt bei
.
Allerdings sind die einschränkenden Nebenbedingungen, um ausschließlich das
Oloid zu erhalten, nicht trivial. Die Polynomgleichung besteht aus 48 Termen mit ausschließlich ganzzahligen Koeffizienten, das Maximum
der Exponentensummen
der Monome ist 8
und es gibt keinen konstanten Term. Ersetzt man
durch
,
wird die Fläche auf der
-Achse
so verschoben, dass der Mittelpunkt im Nullpunkt liegt.
-
Das Oloid als Teil einer algebraischen Fläche 8. Grades
-
… herausgezoomt …
-
… noch weiter herausgezoomt
Literatur
- Paul Schatz: Rhythmusforschung und Technik 3. Auflage unter dem Titel: Die Welt ist umstülpbar: Rhythmusforschung und Technik. niggli Verlag 2008
- Spektrum der Wissenschaft: Mathematische Unterhaltungen III, Artikel: Eine Reise in das Reich des Würfels, Seiten 12–17, Dossier 2/2004
- brand eins: Heft 12, 2017, Seiten 120–127 Das Geheimnis des umgestülpten Würfels
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 10.04. 2023