Parität (Physik)
Die Parität bezeichnet in der Physik eine Symmetrieeigenschaft, die ein physikalisches System gegenüber einer räumlichen Spiegelung haben kann.
Beschreibung
Der Parität liegt eine Raumspiegelung
zugrunde, die nach Auswahl eines Punktes als Koordinatenursprung durch einen
Vorzeichenwechsel in jeder der drei Ortskoordinaten dargestellt wird. Dabei
bleibt die Zeit
unverändert:
Jeder Ort
geht dabei in den Ort
über, der, anschaulich gesprochen, „jenseits des Ursprungs genau gegenüber“
liegt. Für die räumliche Vorstellung dieser Transformation
der Koordinaten ist oft hilfreich, dass sie aus einer Spiegelung an einem
ebenen Spiegel und einer anschließenden 180°-Drehung um die zum Spiegel
senkrechte Richtung zusammengesetzt werden kann.
Eine physikalische Fragestellung ist nun, wie sich ein physikalisches System in einem bestimmten Zustand verhält, wenn es räumlich gespiegelt wird. Für die Antwort spielt es keine Rolle, ob nur in der Beschreibung des Systems die obige Koordinatentransformation vorgenommen wird oder ob stattdessen ein zweites System als gespiegelte Kopie des ersten aufgebaut wird. Behält eine physikalische Größe des Systems dabei ihren Wert, dann ist das System hinsichtlich dieser Größe spiegelsymmetrisch, es hat positive Parität. Wechselt eine physikalische Größe bei gleichbleibendem Betrag nur ihr Vorzeichen, dann hat das System hinsichtlich dieser Größe negative Parität. (Bezüglich des Betrags hat es dann also positive Parität.) In allen anderen Fällen liegt keine bestimmte Parität vor. Solche Systeme erscheinen „unsymmetrisch“, jedenfalls in Bezug zum gerade benutzten Koordinatenursprung.
Beispiele
Eine am Ursprung befindliche elektrische Punktladung
hat hinsichtlich ihres Potentials
positive Parität, denn
.
Hinsichtlich ihres elektrischen Feldes aber hat sie negative Parität, denn
.
Bezüglich eines anders gewählten Koordinatenursprungs liegt gar keine Parität
vor.
Paritätserhaltung
Bei allen Prozessen, die durch Gravitation oder Elektromagnetismus bewirkt werden, bleibt die Parität des Anfangszustands, wenn er eine hat, erhalten. Diese Paritätserhaltung gilt demnach in der ganzen Klassischen Physik. Anschaulich bedeutet dies z.B., dass aus einem symmetrischen Zustand nicht ein unsymmetrischer hervorgehen kann. Diese Aussage mag manchmal falsch erscheinen, z.B. wenn nach der Explosion eines vollständig symmetrisch aufgebauten Feuerwerkskörpers die entgegensetzt auseinander fliegenden Brocken verschiedene Größe haben. Oder wenn sich ein glühender Eisenstab beim Abkühlen in unsymmetrischer Weise spontan magnetisiert. Nach der klassischen Physik muss die Ursache solcher Symmetriebrechung darin liegen, dass schon der Anfangszustand nicht völlig symmetrisch war, was wegen der Kleinheit der Störung aber unerkannt geblieben ist. Alles andere widerspricht der unmittelbaren Anschauung, denn ein mechanischer Apparat, der in spiegelbildlichem Nachbau nicht genau so funktionieren würde wie das Original, liegt außerhalb unserer Vorstellungsmöglichkeiten. Zum Beispiel müsste man sich vorstellen können, was bei einer normalen Holzschraube zwischen dem Gewinde und dem Holz passiert, wenn sie die Parität verletzt, also beim Hineindrehen herauskommt. Die Anschauung befindet sich hingegen im Einklang mit allen praktischen Erfahrungen in der makroskopischen Welt, die vollkommen von den paritätserhaltenden Wechselwirkungen Schwerkraft und Elektromagnetismus bestimmt werden.
Ein anderes Kennzeichen der Paritätserhaltung ist, dass man durch alleiniges Beobachten eines physikalischen Vorgangs prinzipiell nicht entscheiden kann, ob man ihn direkt oder nach einer Spiegelung beobachtet. Denn geht ein System, sei es symmetrisch oder unsymmetrisch, von einem Anfangszustand nach den Gesetzen der klassischen Physik in einen anderen Zustand über, dann geht ein gespiegelter Anfangszustand des gespiegelt aufgebauten Systems in derselben Zeit in das Spiegelbild des Endzustands über. Die beiden Fälle sind nur dadurch zu unterscheiden, dass man im Beobachtungsvorgang das Vorhandensein oder die Abwesenheit einer Spiegelung nachweist.
Die theoretische Begründung beider Kennzeichen der Paritätserhaltung beruht darauf, dass die Bewegungsgleichungen für Gravitation und Elektromagnetismus unverändert bleiben, wenn man die oben angegebene Koordinatentransformation durchführt. Man sagt, diese Gleichungen selbst besitzen Spiegelsymmetrie, sie sind unter dieser Transformation kovariant.
Paritätsverletzung
Aufgrund aller praktischen Erfahrung und physikalischen Erkenntnis wurde eine Verletzung der Paritätserhaltung für ausgeschlossen gehalten, bis im Jahr 1956 eine bestimmte Beobachtung aus der Elementarteilchenphysik nicht mehr anders zu deuten war. Tsung-Dao Lee und Chen Ning Yang schlugen diesen Ausweg zur Lösung des „τ-θ-Puzzle“ (gesprochen „Tau-Theta-Puzzle“) beim Zerfall des Kaons vor. Noch im selben Jahr konnte dies von Chien-Shiung Wu und Leon Max Lederman in zwei unabhängigen Experimenten bestätigt werden.
Die Ursache der Paritätsverletzung liegt in der schwachen Wechselwirkung, mit welcher z.B. die Beta-Radioaktivität und der Zerfall vieler kurzlebiger Elementarteilchen beschrieben wird. Die Formeln der theoretischen Formulierung der schwachen Wechselwirkung sind nicht invariant gegenüber der Paritätstransformation. Fermionische Teilchen wie zum Beispiel das Elektron besitzen eine Eigenschaft namens Chiralität mit zwei möglichen Ausprägungen, die als linkshändig und rechtshändig bezeichnet werden und durch Raumspiegelung wechselseitig ineinander übergehen. Das ist vergleichbar mit der Polarisation von Licht oder eben mit dem Unterschied von linker und rechter Hand. Ein Elektron befindet sich, wie in der Quantenphysik möglich, im Allgemeinen in einer Art von Überlagerungszustand von Links- und Rechtshändigkeit. Eine paritätserhaltende Wechselwirkung muss beide Chiralitäten gleich stark betreffen. Die schwache Wechselwirkung greift aber lediglich an der linkshändigen Komponente des Elektronenzustands an. Dadurch ist die schwache Wechselwirkung nicht symmetrisch unter der Paritätstransformation und verletzt die Paritätserhaltung.
Theoretische Beschreibung in der Quantenmechanik
Paritätsoperator und Eigenwerte
In der Quantenmechanik
wird der Zustand
eines physikalischen
Systems bestehend aus einem Teilchen im einfachsten Fall durch eine Wellenfunktion
beschrieben. Diese ist eine Funktion .
Das Verhalten solcher Wellenfunktionen unter der Paritätstransformation wird
durch einen Operator
beschrieben, Paritätstransformation oder Paritätsoperator genannt, welche
jeder Wellenfunktion
die zugehörige Wellenfunktion
im gespiegelten Koordinatensystem zuordnet. Sie ist definiert durch die
Gleichung
für jede Wellenfunktion
und jeden Ortsvektor
.
Für Dirac-Wellenfunktionen
ist der Paritätsoperator nicht allein eine Raumspiegelung der Wellenfunktion. Es
tritt eine Transformation im 4dimensionalen Dirac-Raum hinzu, die durch
Multiplikation mit der Dirac-Matrix
bewirkt wird:
Der Paritätsoperator hat einfache mathematische Eigenschaften:
- Linearität
- Es handelt sich um eine Involution
(Mathematik): Durch zweifache Anwendung erhält man wiederum die
ursprüngliche Wellenfunktion,
, somit ist
invertierbar und
.
- Der Operator erhält die Norm;
da
linear und invertierbar ist, ist
ein unitärer Operator, wie bei den Symmetrietransformationen in der Quantenphysik üblich.
- Aufgrund der Unitarität ist
gleich seinem Adjungierten
, somit ist
selbstadjungiert.
Als selbstadjungierter Operator hat
nur reelle Eigenwerte und lässt sich als Observable
auffassen. Zu dieser Observable existiert aber kein direktes klassisches
Pendant, aus dem sie sich (etwa über ein Funktionalkalkül)
ergibt. Da der Paritätsoperator unitär ist, haben all seine Eigenwerte Betrag
.
Somit besitzt
höchstens die Eigenwerte
und
,
auch als Paritätsquantenzahl bezeichnet. Die Eigenfunktionen zum
Eigenwert
erfüllen die Gleichung
und gehören damit zu den geraden
(auch: symmetrischen) Funktionen (wie zum Beispiel eine Glockenkurve). Zum
Eigenwert
gehören ungerade (auch: schiefsymmetrische) Wellenfunktionen, denn es
gilt
.
Jeder Zustand lässt sich eindeutig als Summe von einem Eigenzustand zum
Eigenwert
und einem zum Eigenwert
darstellen, das heißt in einen geraden und einen ungeraden Teil zerlegen, wie
leicht nachzurechnen ist und auch aus dem Spektralsatz
folgt.
Für Mehrteilchensysteme wird der Paritätsoperator analog zunächst für den Raum eines jeden einzelnen Teilchens definiert und dann auf das Tensorprodukt der Räume fortgesetzt:
(linear fortzusetzen auf den ganzen Produktraum)
Algebraisch lässt sich der Paritätsoperator auch durch das
Transformationsverhalten der Komponenten des Ortsoperators
charakterisieren:
Oder anders ausgedrückt:
Der Paritätsoperator antivertauscht also mit dem Ortsoperator:
Das Gleiche gilt auch für die Komponenten des Impulsoperators
.
Paritätserhaltung und Paritätsverletzung
Erhaltung der Parität ist gewährleistet, wenn der Hamilton-Operator
mit dem Paritätsoperator vertauschbar ist:
.
Als Folge bleibt ein einmal vorliegender Paritätseigenwert für alle Zeit
erhalten. Des Weiteren existiert ein gemeinsames vollständiges System von
Eigenzuständen zu
und
,
mit der Folge, dass, bis auf zufällige mögliche Ausnahmen im Fall von
Energieentartung, alle Energieeigenzustände eine wohldefinierte Parität
besitzen.
Aufgrund der beobachteten Paritätsverletzung muss der für die betreffenden Prozesse gültige Hamilton-Operator einen mit dem Paritätsoperator nicht vertauschbaren Term enthalten. Damit folgt, dass es Prozesse gibt, in denen die anfängliche Parität nicht erhalten bleibt, und dass die Energieeigenzustände genau genommen Überlagerungen von zwei Zuständen entgegengesetzter Parität sind. Da dieser paritätsverletzende Term nur in der schwachen Wechselwirkung vorkommt, sind die tatsächlich beobachtbaren Auswirkungen meistens geringfügig, wenn auch theoretisch bedeutsam.
Andere Dimensionen
Betrachtet man physikalische Theorien in anderen als drei Dimensionen, so ist
zu beachten, dass bei geradzahliger Dimension des Raumes eine Umkehr aller
Koordinaten nichts anderes als eine Drehung ist (die Determinante ist
).
Daher definiert man für allgemeine Dimensionszahl die Paritätstransformation als
Umkehr einer Koordinate und verfährt ansonsten analog. Dabei hat man den
praktischen Nachteil, dass es nicht möglich ist, bezugssystemsunabhängig eine
feste solche Matrix als Paritätstransformation zu definieren.
Siehe auch
![Trenner](/button/corpdivider.gif)
![externer Link](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de;
Datum der letzten Änderung: Jena, den: 19.12. 2021