Fastprimzahl

Eine n-Fastprimzahl oder auch Fastprimzahl n-ter Ordnung ist eine natürliche Zahl, deren Primfaktorzerlegung aus genau n Primzahlen besteht, wobei mehrfache Primteiler entsprechend oft gezählt werden. Da alle natürlichen Zahlen aus Primfaktoren zusammengesetzt sind, ist jede natürliche Zahl zugleich auch eine Fastprimzahl. Fastprimzahlen zweiter Ordnung nennt man auch Semiprimzahlen. Fastprimzahlen bewegen sich zwischen den Polen der unteilbaren Primzahlen und der maximal teilbaren hochzusammengesetzten Zahlen und schließen dabei beide mit ein.

Der Norweger Viggo Brun führte den Begriff um 1915 zur Verallgemeinerung von Primzahlen ein, um einen neuen Ansatz für ungelöste Primzahlprobleme zu finden.

Definition

Sei {\displaystyle z\in \mathbb {N} \setminus \{0\}} und {\displaystyle z=\prod _{i=1}^{k}{p_{i}}^{e_{i}}} mit Primzahlen {\displaystyle p_{1},\dotsc ,p_{k}}. Dann heißt z Fastprimzahl n-ter Ordnung, wobei {\displaystyle n=\sum _{i=1}^{k}e_{i}} gilt. Die Zahlenfolge für ein festes n wird auch mit P_{n} bezeichnet. Die Wohldefiniertheit folgt aus der Eindeutigkeit der Primfaktorzerlegung für alle natürlichen Zahlen.

Dieses Konzept kann problemlos auf die ganzen Zahlen und beliebige ZPE-Ringe verallgemeinert werden.

Beispiele und Werte

Beispiele:

Die ersten zwölf Fastprimzahlen erster bis zwanzigster Ordnung
01. Ordnung 2 3 5 7 11 13 17 19 23 29 31 37 Folge A000040 in OEIS
02. Ordnung 4 6 9 10 14 15 21 22 25 26 33 34 Folge A001358 in OEIS
03. Ordnung 8 12 18 20 27 28 30 42 44 45 50 52 Folge A014612 in OEIS
04. Ordnung 16 24 36 40 54 56 60 81 84 88 90 100 Folge A014613 in OEIS
05. Ordnung 32 48 72 80 108 112 120 162 168 176 180 200 Folge A014614 in OEIS
06. Ordnung 64 96 144 160 216 224 240 324 336 352 360 400 Folge A046306 in OEIS
07. Ordnung 128 192 288 320 432 448 480 648 672 704 720 800 Folge A046308 in OEIS
08. Ordnung 256 384 576 640 864 896 960 1296 1344 1408 1440 1600 Folge A046310 in OEIS
09. Ordnung 512 768 1152 1280 1728 1792 1920 2592 2688 2816 2880 3200 Folge A046312 in OEIS
10. Ordnung 1024 1536 2304 2560 3456 3584 3840 5184 5376 5632 5760 6400 Folge A046314 in OEIS
11. Ordnung 2048 3072 4608 5120 6912 7168 7680 10368 10752 11264 11520 12800 Folge A069272 in OEIS
12. Ordnung 4096 6144 9216 10240 13824 14336 15360 20736 21504 22528 23040 25600 Folge A069273 in OEIS
13. Ordnung 8192 12288 18432 20480 27648 28672 30720 41472 43008 45056 46080 51200 Folge A069274 in OEIS
14. Ordnung 16384 24576 36864 40960 55296 57344 61440 82944 86016 90112 92160 102400 Folge A069275 in OEIS
15. Ordnung 32768 49152 73728 81920 110592 114688 122880 165888 172032 180224 184320 204800 Folge A069276 in OEIS
16. Ordnung 65536 98304 147456 163840 221184 229376 245760 331776 344064 360448 368640 409600 Folge A069277 in OEIS
17. Ordnung 131072 196608 294912 327680 442368 458752 491520 663552 688128 720896 737280 819200 Folge A069278 in OEIS
18. Ordnung 262144 393216 589824 655360 884736 917504 983040 1327104 1376256 1441792 1474560 1638400 Folge A069279 in OEIS
19. Ordnung 524288 786432 1179648 1310720 1769472 1835008 1966080 2654208 2752512 2883584 2949120 3276800 Folge A069280 in OEIS
20. Ordnung 1048576 1572864 2359296 2621440 3538944 3670016 3932160 5308416 5505024 5767168 5898240 6553600 Folge A069281 in OEIS

Eigenschaften

Anwendungen

Fastprimzahlen zweiter Ordnung, also das Produkt zweier Primzahlen finden in der Kryptographie Anwendung.

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 29.08. 2022