Zustandsgleichung
Als Zustandsgleichung wird der funktionale Zusammenhang zwischen thermodynamischen Zustandsgrößen bezeichnet, mit deren Hilfe sich der Zustand eines thermodynamischen Systems beschreiben lässt. Dabei wählt man eine der Zustandsgrößen als Zustandsfunktion und die anderen, von ihr abhängigen Zustandsgrößen als Zustandsvariablen. Zustandsgleichungen werden benötigt, um die Eigenschaften von Fluiden, Fluidgemischen und Feststoffen zu beschreiben. Alle Zustandsgleichungen eines Systems lassen sich in einem thermodynamischen Potential zusammenfassen.
Einführung
Die bekanntesten Zustandsgleichungen dienen der Zustandsbeschreibung von Gasen und Flüssigkeiten. Der wichtigste und zugleich auch einfachste Vertreter, der in der Regel herangezogen wird, um das Wesen einer Zustandsgleichung zu erklären, ist die allgemeine Gasgleichung. Diese beschreibt zwar nur ein ideales Gas exakt, kann jedoch bei niedrigen Drücken und hohen Temperaturen auch als Näherung für reale Gase herangezogen werden. Bei hohen Drücken, niedrigen Temperaturen und insbesondere Phasenübergängen versagt sie jedoch, so dass andere Zustandsgleichungen notwendig werden. Zustandsgleichungen realer Systeme sind dabei immer Näherungslösungen und können die Eigenschaften eines Stoffes nicht exakt für alle Bedingungen beschreiben.
Zustandsgleichungen sind keine Folgerungen aus den allgemeinen Hauptsätzen der Thermodynamik. Sie müssen empirisch oder mittels statistischer Methoden gefunden werden. Sind alle Zustandsgleichungen eines thermodynamischen Systems bekannt bzw. umfasst eine Zustandsgleichung alle Zustandsgrößen des Systems, so können mit Hilfe der Thermodynamik alle thermodynamischen Eigenschaften desselben ermittelt werden.
In der Thermodynamik wird zwischen kalorischen und thermischen Zustandsgleichungen unterschieden. Aufgrund des zweiten Hauptsatzes der Thermodynamik sind diese jedoch voneinander abhängig.
Thermodynamischer Hintergrund
Zustandsgleichungen stellen einen stoffspezifischen Zusammenhang zwischen
thermodynamischen Zustandsgrößen dar. Ein thermodynamisches System, welches aus
einer oder mehreren gasförmigen, flüssigen oder festen Phasen besteht, ist im thermodynamischen
Gleichgewicht durch eine gewisse Anzahl von Zustandsgrößen eindeutig
bestimmt. Zustandsgrößen hängen nur vom aktuellen Zustand, aber nicht von der
Vorgeschichte des Systems ab. Zwei Zustände sind genau dann gleich, wenn alle
entsprechenden Zustandsgrößen übereinstimmen. Solche Zustandsgrößen sind
z.B. die Temperatur
,
der Druck
,
das Volumen
und die Innere
Energie
.
Bei einem Stoffgemisch aus
verschiedenen Komponenten sind die Stoffmengen
gleichfalls Zustandsgrößen, wobei statt der einzelnen Stoffmengen meist die
gesamte Stoffmenge
und die Molenbrüche
zur Beschreibung verwendet werden.
Die Zustandsgrößen eines Systems sind nicht alle voneinander unabhängig. Die
Zahl der unabhängig veränderbaren Zustandsgrößen, d.. die Zahl
der Freiheitsgrade, hängt
gemäß der Gibbsschen
Phasenregel von der Zahl
der Komponenten und der Zahl
der verschiedenen Phasen
des thermodynamischen Systems ab:
.
- Bei einem einkomponentigen einphasigen System (z.B. flüssigem
Wasser;
) genügen demnach zwei Zustandsgrößen zur eindeutigen Festlegung des Zustandes. Bei gegebener Stoffmenge
sind die Zustandsgrößen
,
und
nicht unabhängig voneinander. Sind z.B. die Temperatur
und der Druck
vorgegeben, so stellt sich automatisch ein bestimmtes Volumen
ein, das nicht variiert werden kann, ohne zugleich
oder
zu ändern.
- Befinden sich bei einem einkomponentigen System zwei Phasen im
Gleichgewicht (
), dann genügt bereits eine Zustandsgröße zur Festlegung. Ist z.B. die Temperatur gegeben, dann stellt sich im Phasengleichgewicht zwischen Flüssigkeit und Dampf automatisch ein bestimmter stoffspezifischer Druck ein, der als Dampfdruck bezeichnet wird. Der funktionale Zusammenhang zwischen Temperatur und Dampfdruck ist eine Zustandsgleichung.
Die thermische Zustandsgleichung
Die thermische Zustandsgleichung setzt die Zustandsgrößen Druck ,
Volumen
,
Temperatur
und Stoffmenge
zueinander in Beziehung.
Die meisten thermischen Zustandsgleichungen, z.B. die allgemeine Gasgleichung und die Van-der-Waals-Gleichung, enthalten explizit, d.h. als Zustandsfunktion, den Druck :
.
Ist das molare
Volumen
oder die Dichte
in Abhängigkeit von Temperatur
und Druck
gegeben, so entspricht dies einer thermischen Zustandsgleichung, die explizit
das Volumen enthält:
.
wobei
die mittlere molare
Masse des Systems bezeichnet.
Alle diese Formen sind gleichwertig und enthalten dieselbe Information.
Für
ergibt sich daraus das totale
Differential:
.
Dieses lässt sich vereinfachen durch
- den Volumenausdehnungskoeffizienten
- die Kompressibilität
- das molare Volumen
woraus resultiert:
.
Die kalorische Zustandsgleichung
Die Eigenschaften eines thermodynamischen Systems, also die stoffspezifischen Zusammenhänge aller Zustandsgrößen, sind durch eine thermische Zustandsgleichung allein nicht vollständig bestimmt. Die Bestimmung der thermodynamischen Potentiale, welche alle Informationen über ein thermodynamisches System enthalten, erfordert zusätzlich eine kalorische Zustandsgleichung. Sie beinhaltet eine Zustandsgröße, die nicht von der thermischen Zustandsgleichung, sondern nur von der Temperatur abhängt.
Besonders gebräuchlich ist die einfach messbare spezifische
Wärmekapazität
bei Normaldruck
bar. Ist
gegeben (z.B. durch eine Wertetabelle
zur Spline-Interpolation
oder ein Polynom
4. Grades), so können die spezifische
Enthalpie
und die spezifische Entropie
bei Normaldruck in Abhängigkeit von der Temperatur berechnet werden:
mit
die Normalbildungsenthalpie
die Normalentropie pro Mol,
beide bei Normalbedingungen
().
Sie sind für viele Stoffe tabelliert.
Daraus ergibt sich die spezifische freie Enthalpie bei Normaldruck in Abhängigkeit von der Temperatur:
Mit der Dichte
in Abhängigkeit von Temperatur
und Druck
,
also einer thermischen Zustandsgleichung, kann daraus die spezifische freie
Enthalpie nicht nur für beliebige Temperaturen, sondern auch für beliebigen
Druck berechnet werden:
Da die freie Enthalpie bezüglich der Variablen
und
ein thermodynamisches Potential ist, sind damit alle thermodynamische Größen des
Systems bestimmt und berechenbar.
In alternativer, aber äquivalenter Weise beschreibt die kalorische Zustandsgleichung auch die Verknüpfung zweier anderer thermodynamischer Potentiale, nämlich der inneren Energie U bzw. der Enthalpie H mit jeweils drei thermodynamischen Zustandsgrößen: der Temperatur T, dem Volumen V (bzw. dem Druck p) und der Stoffmenge n.
Für
und
ergeben sich die totalen
Differentiale:
Mit der Annahme
(konstante Stoffmenge) und den Beziehungen
(isochore Wärmekapazität)
(isobare Wärmekapazität)
folgt
und
Beispiele
Ideale Gase
- Ideale Gasgleichung(en), auch Näherung für reale Gase unter bestimmten Bedingungen
Reale Gase
- Van-der-Waals-Gleichung
- Virialgleichungen
- Zustandsgleichung von Redlich-Kwong
- Zustandsgleichung von Redlich-Kwong-Soave
- Zustandsgleichung von Peng-Robinson
Sprengstoffe
Siehe auch
- Materialmodell
- Fundamentalgleichung, Phasendiagramm
- Maxwell-Beziehung
- Zustandsänderung
- Cauchy-Elastizität



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 02.11. 2021