Quanten-Hall-Effekt
Der Quanten-Hall-Effekt (kurz: QHE) äußert sich dadurch, dass bei tiefen Temperaturen und starken Magnetfeldern die senkrecht zu einem Strom auftretende Spannung nicht wie beim klassischen Hall-Effekt linear mit dem Magnetfeld anwächst, sondern in Stufen. Der Effekt tritt an Grenzflächen auf, bei denen die Elektronen als zweidimensionales Elektronengas beschrieben werden können.
Der sog. Hall-Widerstand
,
also das Verhältnis der Hall-Spannung zur Stromstärke, nimmt dabei als
Plateauwerte nur ganzzahlige Bruchteile der Größe
an (
),
wobei
das plancksche
Wirkungsquantum und
die Elementarladung
ist. Beides sind Naturkonstanten;
die Plateauwerte hängen also weder von den Materialeigenschaften wie der
Ladungsträgerdichte, noch von der Probengröße, noch von der Magnetfeldstärke ab.
Für diese Erkenntnisse erhielt Klaus von Klitzing im Jahr 1985 den Physik-Nobelpreis.
Die als Von-Klitzing-Konstante
bezeichnete Größe
wird inzwischen zur Norm-Definition
des elektrischen
Widerstandes verwendet. Sie ist exakt bekannt, weil
und
zur Definition
der Maßeinheiten dienen und ihnen ein exakter Wert zugewiesen wurde.
Vom integralen Quanten-Hall-Effekt mit nur ganzzahligen Nennern von
unterscheidet man den fraktionalen Quanten-Hall-Effekt (auch
fraktionierter QHE), bei dem die Nenner die Form von Brüchen annehmen
(siehe unten).
Beschreibung des Phänomens

Beim klassischen Hall-Effekt fließt elektrischer Strom durch eine Platte, die senkrecht zu ihrer Oberfläche von einem Magnetfeld durchsetzt wird. Die im Magnetfeld fließenden Ladungsträger werden durch die Lorentzkraft seitlich abgelenkt, so dass an den Kanten der Platte quer zur Stromrichtung eine elektrische Spannung gemessen werden kann, die als Hall-Spannung bezeichnet wird.
Das Verhältnis der seitlich anliegenden Hall-Spannung zum Strom wird als Hall-Widerstand bezeichnet und beträgt in zweidimensionalen Hall-Streifen beim klassischen Hall-Effekt
, [1]
wobei
die quer zum Gesamtstrom auftretende Hallspannung,
der Gesamtstrom (senkrecht zur Richtung, in der die Hallspannung gemessen wird),
die Magnetfeldstärke,
die Ladungsträgerdichte [2][3]
und
die Elementarladung
ist. Der klassische Hall-Widerstand ist also insbesondere proportional zum
anliegenden Magnetfeld. Man sieht dies im Bild für kleine
-Feldwerte.
Bei hinreichend tiefer Temperatur und starkem Magnetfeld nimmt der Hall-Widerstand jedoch unabhängig vom Material einen der Plateau-Werte
(im nebenstehenden Bild wird
mit
gekennzeichnet)
an, wobei hier [4]
ganze Zahlen sind,
das plancksche
Wirkungsquantum und
der „von
Klitzing’sche Elementarwiderstand“ ist.
Eine Zunahme der Stärke des Magnetfeldes
lässt jetzt den Hall-Widerstand konstant, bis dieser auf den nächsten
Stufenwert wechselt. Die Mitte der Stufen entspricht der oberen Formel, also
dem klassischen Hall-Effekt. Genau in der Stufenmitte verschwindet die in
Stromrichtung an der Probe anliegende Spannung
,
das heißt, der elektrische
Widerstand ist dort Null und die Leitung wird dissipationsfrei,
anscheinend im ganzen Plateaubereich zwischen den Stufen. An den Stufen selbst
ergeben sich scharfe Maxima im Widerstand.
Bei den Plateauzuständen des Quanten-Hall-Effekts handelt es sich also, ähnlich wie bei der Supraleitung, um einen makroskopischen Quantenzustand.
Versuchsbedingungen
Versuche zur Beobachtung des Quanten-Hall-Effektes werden üblicherweise in einem einfachen Helium-Kryostaten bei 4,2 Kelvin durchgeführt. Tiefere Temperaturen, die nur durch deutlich aufwändigere Kühltechnik möglich werden, sind meistens nicht nötig, außer für die Beobachtung des gebrochenzahligen Effektes. Eine Stickstoffkühlung reicht allerdings nicht aus, da die Kühltemperatur bei ca. 70 Kelvin liegt und aufgrund dessen die mittlere freie Weglänge der Elektronen noch zu gering ist, die Messung also durch Wechselwirkungen zu stark gestört wird.
Je nach Probe werden Magnetfelder von einigen Tesla verwendet und konnten bei von Klitzings Apparatur bis zu 40 Tesla betragen, was einem Vielfachen der mittleren Erdmagnetfeldstärke in Deutschland von etwa 20 Mikrotesla entspricht. Für sehr starke Magnetfelder wird meist ein Helmholtz-Spulen-Paar aus supraleitendem Material verwendet, in dem typischerweise Spulenstromstärken zwischen 10 A und 100 A fließen. Der Strom durch die Probe selbst liegt dagegen nur bei 0,1 bis 10 µA.
Die bei QHE-Versuchen verwendeten Proben sind MOSFETs (metal oxide
semiconductor field effect transistors), bei denen die Ladungsträgerdichte
durch eine am Transistorgatter
angelegte Spannung verändert werden kann, oder aber
Halbleiter-Isolator-Heterostrukturen (z.B.
AlxGa1-xAs/GaAs-Heterostrukturen), also dünne Plättchen,
die einen Übergang zwischen einem Isolator und einem Halbleiter besitzen. An
einer solchen Grenzschicht verlieren die Elektronen eine Bewegungsrichtung: Die
-Richtung,
in der das Magnetfeld angelegt wird, ist im Grenzpotential durch eine Quantenzahl fixiert, die
Besetzungswahrscheinlichkeit des nächsthöheren Energieniveaus ist verschwindend
gering. Man spricht daher von einem zweidimensionalen
Elektronengas.
In dem im Jahr 2004 erstmals hergestellten Material Graphen wurde der Quanten-Hall-Effekt bei Raumtemperatur beobachtet, siehe auch unten im Abschnitt Ungewöhnlicher Quanten-Hall-Effekt in Graphen-Monolagen.
Theorie
Leitfähigkeitstensor
Aufgrund eines Magnetfelds oder von bevorzugten Leitungsrichtungen in einem
Festkörper ist das Ohmsche
Gesetz allgemein mithilfe eines Leitfähigkeitstensors
zu schreiben:
In zwei Dimensionen lässt sich der Leitfähigkeit-
und der Widerstandstensor
als 2x2-Matrizen darstellen:
.
Wählt man für die Beschreibung des QHE
als die Stromrichtung,
als die seitliche Richtung, in die die Hall-Spannung anliegt, und
als die Magnetfeldrichtung, so gilt aufgrund der Anordnung
.
Orthogonales E- und B-Feld
Die klassische Bewegung von freien Elektronen, die sich in zueinander
senkrecht (orthogonal)
stehenden elektrischen
und magnetischen
Feldern befinden, ist eine auf Spiralbahnen entlang des -Feldes
und kann als Überlagerung der folgenden Komponenten aufgefasst werden:
- eine Kreisbewegung mit der Zyklotronfrequenz
um die
-Feldrichtung,
- einer Driftbewegung mit
senkrecht zu
- und
-Feld,
- einer unbeschleunigten Bewegung in
-Feldrichtung.
Die Zyklotronfrequenz spielt auch beim QHE eine wichtige Rolle, wie wir gleich sehen werden.
Quantenmechanische Betrachtung
Mit ,
der Coulomb-Eichung
und dem Separationsansatz
kann die Schrödingergleichung
für das freie Elektron, also
,
in eine Differentialgleichung für die -abhängige
Funktion
umgeformt werden, die die Schrödingergleichung eines harmonischen
Oszillators um den Ruhepunkt
ist. Man erhält als Energieeigenwerte
nur die Landau-Niveaus:
, wobei
.
Bei einer Probenabmessung von
in Stromrichtung bzw.
in Richtung der Hall-Spannung gilt dann: Die Wellenzahl in
-Richtung
kann die Werte
mit ganzzahligem
annehmen, sie taucht aber auch in der Ruhelage des harmonischen Oszillators auf,
für die
gilt. Daraus ergibt sich für
der Wertebereich
.
Jedes Landau-Niveau hat also in diesem Bauteil als Entartungsgrad pro Flächeneinheit eine Größe gL („Zustandsflächendichte“), für die folgende Beziehung gilt:
Am Probenrand und durch Unordnungspotenziale in der Probe treten weitere Effekte auf, die beim Verständnis des QHE eine entscheidende Rolle spielen und im Folgenden erläutert werden, denn allein mit den idealen Landau-Niveaus lässt sich der QHE nicht erklären.
Vereinfachte Erklärung des QHE
Durch das Anlegen eines Magnetfeldes (senkrecht zum zweidimensionalen
Elektronengas (2DEG)) werden die Elektronen dazu gebracht, sich auf
Kreisbahnen – den Zyklotronbahnen
– zu bewegen. Mit der Coulomb-Eichung
lässt sich der Hamiltonian
des Systems schreiben als
>.
Dies lässt sich umschreiben zu einem Hamiltonian des harmonischen
Oszillators in
-Richtung
mit der Zyklotronfrequenz
.
Dessen Zustände sind quantisiert und bilden die Landau-Niveaus.[9]
Legt man nun senkrecht zum Magnetfeld ein zusätzliches longitudinales elektrisches Feld (etwa durch ein externes Potential) parallel zum 2DEG an, so erfahren die Elektronen eine zusätzliche Ablenkung. Im idealen Fall (ohne Streuung) werden sie dabei in die zum elektrischen Feld senkrechte Richtung abgelenkt und erzeugen die Hall-Spannung UH, d.h., sie beschreiben eine Spiralbahn senkrecht zum elektrischen und Magnetfeld (die Bewegung ist durch das 2DEG in diese zwei Dimensionen eingeschränkt). Da ohne Streuung die Streuzeit τ gegen unendlich geht, verschwinden sowohl die Leitfähigkeit (in Richtung des externen elektrischen Feldes/Potentials) als auch der zugehörige Widerstand, da sich die Elektronen senkrecht zum Potential bewegen. Bezieht man nun die Streuung mit ein, so ändert sich die Richtung eines Elektrons, das an einer Störstelle gestreut wurde. Dadurch erfahren die Ladungsträger eine Komponente in Richtung des elektrischen Feldes, die zu einem Strom führt.
Quantenmechanisch kann man die Oszillationen von Widerstand und Leitfähigkeit
vereinfacht dadurch erklären, dass je nach Position der Fermienergie relativ zu
den Landau-Niveaus Streuung stattfinden kann oder nicht. Die Landau-Niveaus sind
durch die endlichen Umläufe der Elektronen nicht deltaförmig, sondern
verbreitert (Halbwertsbreite ).
Befindet sich die Fermienergie innerhalb eines Niveaus, so tritt Streuung auf,
da freie Zustände existieren, in die gestreut werden kann. Liegt die
Fermienergie jedoch zwischen zwei Landau-Niveaus, wird die Streuung mangels
freier Zustände idealerweise vollständig unterdrückt und es findet nur über die
Randkanäle
widerstandfreier Transport statt (siehe unten).
Die Position der Landau-Niveaus zueinander ändert sich über
mit dem
-Feld.
Die Fermi-Kante,
also der Energiewert, bis zu dem sich freie Elektronen im Festkörper befinden,
liege zwischen den Niveaus
und
.
Wie oben festgestellt wurde, verschwindet die Komponente
in der Mitte der Plateaus; die Hall-Spannung
verschwindet dagegen nicht. Aus der Ladungsträgerdichte
,
der jeweiligen Ladung und ihrer Driftgeschwindigkeit
lässt sich die Stromdichte
bestimmen:
.
Die Nebendiagonalkomponente
des Leitfähigkeitstensors ist also ein ganzzahliges Vielfaches (
)
der von Klitzing’schen Grundeinheit
,
woraus
folgt. Wird
verändert, so bleibt die Zahl
konstant, bis ein neues Landau-Niveau an die Fermikante stößt und
seinen Wert ändert.
Strenggenommen kann das Fermi-Niveau nicht zwischen zwei Landau-Niveaus
liegen: Wird ein Landau-Niveau durch ein steigendes >-Feld
entvölkert, so springt die Fermienergie in das nächstniedrigere Niveau, ohne
dazwischen zu verbleiben. Das widerspricht jedoch der Annahme, unter der das
Auftreten der Oszillationen erklärt werden soll. Die Lösung dieses scheinbaren
Problems sind Effekte in realen Kristallen.
Nur bei völlig reinen Kristallen, die auch keine Gitterfehler
aufweisen, tritt obiges Verhalten auf. Durch die in Realität vorhandenen
Störstellen werden die „glatten“ Landau-Niveaus „wellig“. Befindet sich nun die
Fermienergie in der Nähe eines solchen Niveaus, gibt es nicht mehr nur am Rand
Schnittpunkte („Randkanäle“),
sondern auch im Innern der Probe. Somit kann das Ferminiveau auch
zwischen den Landau-Niveaus liegen.
Zusammenhang mit Magnetflussquanten
Wird der Entartungsgrad mit der Probenfläche multipliziert, so erhält man den folgenden Zusammenhang zwischen der Anzahl von Elektronen im Landauniveau und der Anzahl von Flussquanten in der Probe:
.
Im Plateauzustand rotiert um jedes Magnetflussquant also die
gleiche Anzahl
von Elektronen.
Dieser Zusammenhang spielt insbesondere beim fraktionalen Quanten-Hall-Effekt
eine Rolle, bei dem sich aus Elektronen und Flussquanten Quasiteilchen bilden (Robert
B. Laughlin, Jainendra
K. Jain).
Zusammenhang mit der Feinstrukturkonstante
Für Elementarteilchen-,
Atom-
und Molekülphysiker
bzw. für Chemiker ist der
Quanten-Halleffekt u.a. deshalb interessant, weil der reziproke
Von-Klitzing-Widerstand die in diesen Disziplinen sehr wichtigen Sommerfeldschen
Feinstrukturkonstante
direkt mit der elektrischen
Feldkonstante
verknüpft:
Notwendigkeit der Versuchsbedingungen
Das starke Magnetfeld ist einerseits dazu notwendig, dass die Landau-Niveaus voneinander getrennt sind. Es bringt aber auch die Anzahl von Flussquanten in dieselbe Größenordnung wie die Anzahl von freien Ladungsträgern.
Die Übergänge auf höhere Landau-Niveaus sind thermisch nur bei niedrigen
Temperaturen wahrscheinlich. Ebenso wird die Einschränkung auf zwei Dimensionen
benötigt, um
als einen festen Wert ansehen zu können.
Geschichte
Der QHE geht kontinuierlich aus dem klassischen Hall-Effekt hervor, wenn die Temperatur abgesenkt wird, Proben mit höherer Beweglichkeit der Elektronen untersucht werden und das Magnetfeld stark anwächst. Abhängig von diesen Parametern tritt der Quanten-Hall-Effekt bei sehr hohen Magnetfeldstärken auf. Die späte Entdeckung des Effekts beruht unter anderem darauf, dass – im Gegensatz zu vielen anderen physikalischen Größen – die apparative Erzeugung von dauerhaften Magnetfeldern verhältnismäßig stark limitiert ist (20–40 Tesla). Deshalb dauerte der Übergang vom klassischen Hall-Effekt, der seit 1879 bekannt ist, zum Quanten-Hall-Effekt mehr als 100 Jahre, bis genügend hochbewegliche Elektronensysteme in Halbleiter-Heterostrukturen zur Verfügung standen.
Obwohl die Plateaus im Hall-Widerstand bereits früher beobachtet wurden, wurden die Werte erst 1980 am Hochfeldmagnetlabor in Grenoble (GHMFL) (damals noch dt.-frz. Kooperation von MPI-FKF und CNRS) durch Klaus von Klitzing mit Naturkonstanten in Verbindung gebracht.
Da die Von-Klitzing-Konstante
eine universelle Bezugsgröße für die Messung von Widerständen ist, die überall
auf der Welt exakt reproduziert werden kann, wurde sie 1990 durch internationale
Übereinkunft als Normal für die Darstellung der
Maßeinheit Ohm
festgelegt.
Sie hängt, wie oben erwähnt, über zwei weitere Größen mit der Feinstrukturkonstante
aus der Quantenelektrodynamik
zusammen.
Varianten und verwandte Effekte
Gebrochenzahliger Quanten-Hall-Effekt (Fraktionaler QHE)
Wenige Jahre nach der Entdeckung des Quanten-Hall-Effekts wurden in
GaAs zusätzliche Plateaus mit nicht-ganzzahligem
gefunden, wobei viele konkrete Ähnlichkeiten zum ganzzahligen
Quanten-Hall-Effekt auftreten. Gut beobachtbar sind gebrochene Quantenzahlen
,
für die
oder
gilt.
Ursache für die Ähnlichkeiten ist anscheinend die Tendenz der Elektronen, zusammen mit dem Magnetfeld gebundene Zustände (composite fermions) zu bilden. Die gebundenen Zustände bestehen hier jeweils aus einem oder mehreren Elektronen und einer passenden Anzahl magnetischer Flussquanten. [6]
Für die Entdeckung des Gebrochenzahligen Quanten-Hall-Effekts erhielten Horst Ludwig Störmer und Daniel Tsui gemeinsam mit Robert B. Laughlin, der den Effekt als Quantenflüssigkeit interpretierte, den Nobelpreis für Physik 1998. Störmer und Tsui entdeckten den Effekt 1981 an den Bell Laboratories mit Arthur Gossard.
Ungewöhnlicher Quanten-Hall-Effekt in Graphen-Monolagen
In dem im Jahr 2004 erstmals hergestellten Material Graphen wurde der Quanten-Hall-Effekt bei Raumtemperatur beobachtet.
Wegen der Besonderheiten in der Dispersion
ist in diesem Material (siehe Graphen)
die Treppenstruktur der ganzzahligen Quanten-Hall-Plateaus, ,
für alle Stufen genau „um 1/2 verschoben“,
Die „Zwei-Valley“-Struktur von Graphen und die Spin-Entartung ergeben einen
zusätzlichen Faktor 4. Die Differenz der Plateauzentren ist aber immer noch
ganzzahlig.
Quanten-Spin-Hall-Effekt
Der Quanten-Spin-Hall-Effekt wurde zuerst 2005 von Charles L. Kane und Gene Mele aufbauend auf einer Arbeit von F. Duncan M. Haldane in Graphen vorgeschlagen. und unabhängig von Andrei Bernevig und Shoucheng Zhang. Die zugrundeliegenden Transportphänomene sind topologisch geschützt, zum Beispiel topologische Isolatoren.
Forscher der Princeton University um Zahid Hasan und Robert Cava berichteten in der Zeitschrift Nature vom 24. April 2008 über Quanten-Hall-artige Effekte in Kristallen aus Bismut-Antimon, ohne dass ein externes Magnetfeld angelegt werden musste. Diese Bismut-Antimon-Legierung ist ein Beispiel eines topologischen Metalls. Die Spinströme konnten jedoch nur indirekt gemessen werden (mit Synchrotron-Photoelektronenspektroskopie).
Die direkte Messung von Spinströmen in solchen Bi-Sb-Legierungen gelang 2009 einem internationalen Team, darunter Charles L. Kane, Zahid Hasan, Robert Cava, Gustav Bihlmayer vom Forschungszentrum Jülich. Die Spinströme fließen ohne äußeren Anreiz aufgrund der inneren Struktur des Materials. Der Informationsfluss erfolgt verlustfrei, selbst bei leichten Verunreinigungen.
Der erste experimentelle Nachweis gelang der Gruppe um Laurens Molenkamp um 2007 in Würzburg in Tellurium-Cadmium-Quantentöpfen. 2017 wurde ein Vorschlag für ein Quanten-Spin-Hall-Material bei Raumtemperatur gemacht (Werner Hanke u.a.).
Schubnikow-de-Haas-Effekt
Der Schubnikow-de-Haas-Effekt
beschreibt die Oszillationen der Leitfähigkeit entlang des angelegten
Strompfades (),
also senkrecht zur Richtung des Quanten-Hall-Effekts. Auf den ersten Blick sinkt
paradoxerweise sowohl die Leitfähigkeit als auch der Widerstand in paralleler
Richtung (bei hoher Reinheit des 2DEG)
genau dann auf 0, wenn die Hallspannung (
)
gerade ein Plateau erreicht. Eine anschauliche Beschreibung liefert das Randkanalmodell,
welches durch den Landauer-Büttiker-Formalismus
beschrieben werden kann.
Literatur
- Klaus von Klitzing, Gerhard Dorda, Michael Pepper: New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Letters, Band 45, 1980, S. 494–497 (Originalarbeit zum Quanten-Hall-Effekt)
Anmerkungen
- ↑
Es wird das SI-Einheitensystem
benutzt; im Gauß'schen
System wäre dagegen
durch
zu ersetzen.
- ↑ Natürlich ist im Zusammenhang mit dem (zweidimensionalen) QHE die Ladungsträgerdichte keine Volumendichte, sondern eine Flächendichte, Gesamtladung / (Länge mal Breite des Hall-Streifens).
- ↑
Zu den experimentellen Gegebenheiten: Man stelle
sich eine Fläche der Länge
und der Breite
vor. Die „Dicke“ des Streifens betrage nur eine Atomlage (Monolage) oder einen ähnlich kleinen Betrag, während
und
viel größer sind und daher eine Flächenbetrachtung ermöglicht wird. Durch diese Versuchsanordnung wird sichergestellt, dass es sich um ein zweidimensionales Elektronengas handelt. Das elektrische Feld
und der Strom
sind in Längsrichtung (
-Richtung), die Hall-Spannung
wirkt in Quer-Richtung (
-Richtung), quer über die Breite der Probe, und die Richtung des Magnetfeld
sei die
-Richtung, also die senkrechte Richtung auf der Fläche gebildet aus
und
.
- ↑
Es gibt auch eine andere Konvention für
- ↑
Auf einen gegebenen Landau-Zustand entfällt also
eine zugehörige Fläche
, wobei die Größe
auch als „Flussquant“ bezeichnet werden kann. (In der Theorie der Supraleitung wird
durch
ersetzt, weil die Ladungsträger dort Cooper-Paare sind.)
- ↑
Diese passende Anzahl wird
genannt, ist geradzahlig und hat in einer Vielteilchentheorie den Effekt, dass bei
-facher Erhöhung des Magnetfeldes,
, durch die „composite particle“-Näherung der Wert
wieder auf den beim integralen Quanten-Hall-Effekt gültigen einfachen Wert
reduziert wird; also



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 09.03. 2024