Stochastischer Prozess

Ein stochastischer Prozess (auch Zufallsprozess) ist die mathematische Beschreibung von zeitlich geordneten, zufälligen Vorgängen. Die Theorie der stochastischen Prozesse stellt eine wesentliche Erweiterung der Wahrscheinlichkeitstheorie dar und bildet die Grundlage für die stochastische Analysis. Obwohl einfache stochastische Prozesse schon vor langer Zeit studiert wurden, wurde die heute gültige formale Theorie erst Anfang des 20. Jahrhunderts entwickelt, vor allem durch Paul Lévy und Andrei Kolmogorow.
Definition
Sei
ein Wahrscheinlichkeitsraum,
ein mit einer σ-Algebra
versehener Raum
(zumeist die reellen
Zahlen mit der Borelschen
σ-Algebra) und
eine Indexmenge,
zumeist
,
die in Anwendungen häufig die Menge der betrachteten Zeitpunkte darstellt. Ein
stochastischer Prozess
ist dann eine Familie
von Zufallsvariablen
,
also eine Abbildung
,
sodass
für alle
eine
-
-messbare Abbildung
ist. Die Menge
wird auch der Zustandsraum des Prozesses genannt, er enthält alle Werte,
die der Prozess annehmen kann.
Eine alternative Formulierung sieht vor, dass
eine einzige Zufallsvariable
ist, wobei
eine (mit einer geeigneten σ-Algebra versehene) Menge von Funktionen
ist. Bei geeigneter Wahl fallen diese beiden Definitionen zusammen.
Die Frage nach der Existenz von stochastischen Prozessen mit bestimmten Eigenschaften wird mit dem Satz von Daniell-Kolmogorow und dem Satz von Ionescu-Tulcea (benannt nach Cassius Ionescu-Tulcea) weitgehend gelöst.
Einteilung
Diskrete und stetige Indexmenge
Die grundlegendste Einteilung stochastischer Prozesse in verschiedene Klassen
erfolgt über die Indexmenge
und die Wertemenge
:
- Ist
abzählbar (etwa
), so heißt der Prozess ein zeitdiskreter stochastischer Prozess oder etwas ungenau diskreter stochastischer Prozess
- Ansonsten heißt der Prozess ein zeitstetiger stochastischer
Prozess. Dabei kann die Indexmenge durchaus auch höherdimensional sein,
wie beispielsweise
.
Diskrete und stetige Wertemenge
- Ist
endlich oder abzählbar, spricht man von wertediskreten Prozessen.
- Ist
, so spricht man von einem reellwertigen Prozess.
Momente
Außerdem werden stochastische Prozesse noch analog zu den Zufallsvariablen danach klassifiziert, ob der Erwartungswert und die Varianz existieren oder spezielle Werte annehmen.
- Ein reellwertiger stochastischer Prozess heißt integrierbar, wenn
für alle
gilt.
- Ein reellwertiger stochastischer Prozess heißt quadratintegrierbar,
wenn
für alle
gilt.
- Ein reellwertiger stochastischer Prozess heißt zentriert, wenn
für alle
gilt.
Stochastische Abhängigkeiten
Des Weiteren werden stochastische Prozesse noch mittels der Struktur ihrer stochastischen Abhängigkeiten klassifiziert, diese werden meist über den bedingten Erwartungswert definiert. Zu diesen Klassen gehören:
- Markow-Prozesse
- Ihre Wahrscheinlichkeit, einen Zustand anzunehmen, ist abhängig von dem Zustand, in dem sie sich davor befanden, aber nicht von der gesamten Vergangenheit des Prozesses. Markow-Prozesse haben somit ein "kurzes Gedächtnis".
- Martingale sowie Sub- und Supermartingale
- Martingale modellieren ein faires Spiel. Hat man zu einem Zeitpunkt bereits einen gewissen Betrag gewonnen, so ist der Erwartungswert für künftige Gewinne genau dieser bereits gewonnene Betrag.
Weitere Eigenschaften: Pfade und Zuwächse
Des Weiteren kann man Prozesse wie folgt klassifizieren:
- Man kann die Eigenschaften der Pfade untersuchen und die Prozesse dementsprechend unterteilen: Prozesse mit stetigen Pfaden, Prozesse mit beschränkten Pfaden etc. Ein Beispiel für einen stochastischen Prozess mit fast sicher stetigen Pfaden ist der Wiener-Prozess.
- Man betrachtet die sogenannten Zuwächse des Prozesses, also Terme der Art
für Indizes
. Je nach geforderter Eigenschaft der Zuwächse erhält man dann Prozesse mit stationären Zuwächsen, Prozesse mit unabhängigen Zuwächsen oder auch Prozesse mit normalverteilten Zuwächsen. So sind beispielsweise die Lévy-Prozesse genau die stochastischen Prozesse mit unabhängigen, stationären Zuwächsen.
Pfade
Für jedes
erhält man eine Abbildung
.
Diese Abbildungen nennt man die Pfade des Prozesses. Häufig spricht man
statt von den Pfaden auch von den Trajektorien oder den Realisierungen des
stochastischen Prozesses.
Ist speziell
und
(oder ein allgemeinerer topologischer
Raum), so kann man von Stetigkeitseigenschaften
der Pfade sprechen. Man nennt einen zeitstetigen stochastischen Prozess
stetig, rechtsseitig stetig, linksseitig stetig bzw.
càdlàg,
wenn alle Pfade des Prozesses die entsprechende Eigenschaft haben. Der
Wiener-Prozess hat
stetige Pfade, von denen im Bild zu den Beispielen unten zwei zu sehen sind. Der
Poisson-Prozess ist ein
Beispiel für einen zeitstetigen, wertdiskreten càdlàg-Prozess;
er hat also rechtsseitig stetige Pfade, bei denen an jeder Stelle der
linksseitige Limes existiert.
Stochastische Prozesse versus Zeitreihen
Neben der Theorie der stochastischen Prozesse gibt es auch die mathematische Disziplin der Zeitreihenanalyse, die weitgehend unabhängig davon operiert. Definitionsgemäß sind stochastische Prozesse und Zeitreihen ein und dasselbe, dennoch weisen die Gebiete Unterschiede auf: Während die Zeitreihenanalyse sich als Teilgebiet der Statistik versteht und versucht, spezielle Modelle (wie etwa ARMA-Modelle) an zeitlich geordnete Daten anzupassen, steht bei den stochastischen Prozessen die Stochastik und die spezielle Struktur der Zufallsfunktionen (etwa Stetigkeit, Differenzierbarkeit, Variation oder Messbarkeit bezüglich gewisser Filtrierungen) im Vordergrund.
Beispiele

- Ein einfaches Beispiel für einen zeitdiskreten Punktprozess ist der
symmetrische Random
Walk, hier veranschaulicht durch ein Glücksspiel: Ein Spieler beginnt zum
Zeitpunkt
mit einem Startkapital von 10 Euro ein Spiel, bei dem er nacheinander immer wieder eine Münze wirft. Bei „Kopf“ gewinnt er einen Euro, bei „Zahl“ verliert er einen. Die Zufallsvariablen
für den Kontostand nach t Spielen definieren einen stochastischen Prozess (mit deterministischer Startverteilung
). Genauer betrachtet handelt es sich bei X um einen Lévy-Prozess und um ein Martingal.
- Einer der wichtigsten stochastischen Prozesse ist der Wiener-Prozess (auch „Brownsche Bewegung“ genannt). Hierbei sind die einzelnen Zustände normalverteilt mit linear anwachsender Varianz. Der Wiener-Prozess findet Anwendung in der stochastischen Integration, der Finanzmathematik und der Physik.
- Weitere Beispiele: Bernoulli-Prozess, Brownsche Brücke, Gebrochene Brownsche Bewegung, Markow-Kette, Ornstein-Uhlenbeck-Prozess, Poisson-Prozess, Weißes Rauschen.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 11.10. 2021