Quasiordnung
Eine Quasiordnung, auch Präordnung, (englisch preorder) ist eine abgeschwächte Variante einer Halbordnung, bei der es möglich ist, dass verschiedene Elemente in beiden Richtungen vergleichbar sind. Die Antisymmetrie muss also nicht erfüllt sein.
Jede beliebige zweistellige Relation kann zu einer Quasiordnung erweitert werden, indem man ihre reflexiv-transitive Hülle bildet.
Insbesondere die totalen Quasiordnungen treten in praktischen Anwendungen beim Anordnen von Objekten in Sortierverfahren, Tabellenkalkulationsprogrammen oder Datenbanken auf.
Definitionen
Quasiordnung

Eine zweistellige Relation
auf einer Menge
heißt eine Quasiordnung (englisch preorder), wenn sie reflexiv und transitiv
ist. Für alle
muss also gelten
-
(Reflexivität) (Transitivität)
Man nennt dann
eine quasigeordnete Menge oder kurz eine Quasiordnung.
Totale Quasiordnung
Eine Quasiordnung heißt total, auch Präferenzordnung,
(englisch total preorder), wenn je zwei Elemente immer vergleichbar sind.
Für alle
muss also gelten:
-
(Totalität)
Man nennt dann
eine total quasigeordnete Menge oder kurz eine totale Quasiordnung.
Eigenschaften
- Eine Halbordnung (englisch partial order) ist eine Quasiordnung.
- Eine Totalordnung (englisch total order) ist eine totale Quasiordnung (und auch eine Halbordnung).
- Jede Äquivalenzrelation ist eine Quasiordnung.
- Ist
eine Quasiordnung, dann gilt für alle
.
Diese Eigenschaft ist sogar charakterisierend für Quasiordnungen: jede Relationmit dieser Eigenschaft ist eine Quasiordnung.
- Ist
eine Quasiordnung, dann gilt
genau dann, wenn für alle
gilt.
Beispiele und Gegenbeispiele
- Vergleicht man komplexe
Zahlen anhand ihres Betrags,
erhält man eine totale Quasiordnung. Deren Definition lautet also:
. Dies ist keine Halbordnung, da zum Beispiel die Zahlen
und
gegenseitig vergleichbar sind, also
und
gilt.
- Auf der Knotenmenge eines gerichteten
Graphen erhält man eine Quasiordnung durch die Festlegung
es gibt einen gerichteten Weg von
nach
(
ist also von
aus erreichbar).
Diese Quasiordnung ist genau dann eine Halbordnung, wenn der Graph zyklenfrei (azyklisch) ist, also keine oder nur triviale Zyklen enthält.
Tatsächlich lässt sich jede endliche Quasiordnung auf diese Weise aus einem geeigneten Graphen gewinnen. - Die Teilbarkeitsrelation | ist eine Quasiordnung auf der Menge der ganzen Zahlen. Sie ist keine Halbordnung, da zum Beispiel 3 | -3, aber auch -3 | 3 gilt. Betrachtet man die Teilbarkeit auf der Menge der natürlichen Zahlen, kommt die Antisymmetrie hinzu, so dass eine Halbordnung vorliegt.
- Ist das Vergleichen von (reellen oder rationalen) Zahlen mit einer Schwankungsbreite (Ungenauigkeit) behaftet, dann handelt es sich nicht um eine Quasiordnung, da die zugehörige Duplikatrelation keine Äquivalenzrelation ist.
- Dagegen ist das Vergleichen nach Abschneiden von Dezimal- oder Binärstellen, oder allgemeiner nach Rundung, eine totale Quasiordnung.
- Die Normen für die alphabetische Sortierung im Deutschen sind bei der Groß-/Kleinschreibung und der Behandlung von Umlauten Beispiele für totale Quasiordnungen, die keine Totalordnungen sind.
Induzierte Äquivalenzrelation und Striktordnung
Eine Quasiordnung
auf einer Menge
erzeugt eine Äquivalenzrelation
– die „kanonische“, das heißt die zu
gehörige, ausgezeichnete Äquivalenzrelation –
auf
durch die Festlegung
.
Zwei Elemente sind also äquivalent, wenn sie gegenseitig vergleichbar sind.
Diese Äquivalenzrelation sei der Kürze halber als Duplikatrelation der
Quasiordnung bezeichnet. Ist
bereits eine Äquivalenzrelation, entsteht durch diese Konstruktion wieder
.
Die Nebenklasse von
ist die Menge
.
Weiterhin erhält man die kanonische Striktordnung
auf
vermöge
.
Ist
total, dann ist
eine strenge
schwache Ordnung. Generell ist das Komplement
einer totalen Quasiordnung eine strenge schwache Ordnung, und umgekehrt.
Zwischen der Ursprungsrelation und den 2 induzierten Relationen besteht der folgende Zusammenhang:
,
wobei die zwei Bedingungen auf der rechten Seite sich gegenseitig ausschließen.
Beispiele:
- Vergleicht man komplexe Zahlen anhand ihres Betrags (siehe oben), dann sind zwei Zahlen genau dann äquivalent, wenn ihr Betrag gleich ist. Die Äquivalenzklassen sind also die Kreise um den Nullpunkt in der komplexen Ebene. Eine Zahl ist „kleiner“ als eine zweite, wenn sie auf dem Kreis mit kleinerem Radius liegt (Radius 0 ist zugelassen).

- Bei der durch einen gerichteten Graphen gegebenen Quasiordnung (siehe
oben) sind zwei Knoten genau dann äquivalent, wenn sie gleich sind oder auf
einem gemeinsamen Zyklus liegen. Weiterhin gilt
, wenn es zwar einen gerichteten Weg von
nach
, aber keinen gerichteten Weg von
nach
gibt. Die drei Äquivalenzklassen beim nebenstehenden Graphen sind also
Außerdem gilt für die induzierte strenge Halbordnung:
- Die Teilbarkeitsrelation ist auch eine Quasiordnung auf jedem Integritätsring. Zwei Elemente sind genau dann äquivalent (im Sinne der Quasiordnung), wenn sie assoziiert sind, also durch Multiplikation mit einer Einheit auseinander hervorgehen.
Quotientenmenge
Auf der Quotientenmenge
oder Faktormenge
(also der Menge der Äquivalenzklassen)
erhält man die kanonische Halbordnung
durch die wohldefinierte
Festlegung
(wobei die Klasse von
mit
bezeichnet ist).
Ist die gegebene Quasiordnung total, dann ist das Ergebnis eine Totalordnung.
Beispiele:
- Beim Vergleich komplexer Zahlen anhand ihres Betrags (siehe oben) ist die
Halbordnung auf der Quotientenmenge isomorph zur gewöhnlichen
(totalen) Ordnung
auf den nichtnegativen reellen Zahlen.
- Bei der Teilbarkeitsrelation auf den ganzen Zahlen (siehe oben) ist die Halbordnung auf der Quotientenmenge isomorph zur Teilbarkeitsrelation auf der Menge der natürlichen Zahlen (einschließlich 0).
Spiegelung
Eine Quasiordnung
kann gespiegelt werden:
(siehe auch Umkehrrelation).
Normalerweise nimmt man dann die Schreibweise:
.
Ist die gegebene Quasiordnung total, dann ist auch das Ergebnis total.
Ist sie eine Halbordnung, so auch das Ergebnis.
Die Spiegelung der Spiegelung ist das Original.
Komposition (Zusammensetzung, Hintereinanderschaltung)
komponentenweise Zusammensetzung
Auf zwei quasigeordneten Mengen
und
kann die Zusammensetzung komponentenweise-kleiner-oder-gleich
auf der Menge
der Paare
wie folgt definiert werden:
Die Zusammensetzung
ist wieder eine Quasiordnung.
Asymmetrie bleibt erhalten. Totalität geht jedoch verloren, das heißt, bei zwei totalen Quasiordnungen bleibt nur eine Quasiordnung, bei zwei Totalordnungen nur eine Halbordnung übrig. (Beispiel: (1,0) ist nicht vergleichbar mit (0,1).)
Eine Art Kommunitativität ist vorhanden, denn
ist isomorph
zu
.
Lexikographische Zusammensetzung
Auf zwei quasigeordneten Mengen
und
kann die lexikographische
Zusammensetzung
auf der Menge
der Paare
wie folgt definiert werden:
Die Zusammensetzung
ist wieder eine Quasiordnung. (Für die Ordnung der gleich langen Wörter unten
sei der Einfachheit halber wieder
gesetzt.)
Nach dem lexikographischen Prinzip lassen sich folgende Quasiordnungen für variabel lange Symbolsequenzen ableiten:
Sei
quasigeordnet und seien
und
die Längen zweier Wörter
(Kleenesche
Hülle) und
,
dann kann
sowohl durch:
als auch durch:
quasigeordnet werden. Letztere Zusammensetzung nennt man wieder lexikographisch.
Sind die gegebenen Quasiordnungen alle total (auf ihren jeweiligen Komponentmengen), und nur dann, entsteht wieder eine totale Quasiordnung.
Sind sie allesamt sogar Totalordnungen, entsteht wieder eine Totalordnung.
Assoziativität
Die genannten Zusammensetzungen verhalten sich assoziativ, das heißt
und
.
Bemerkung:
- Bei den Tabellenkalkulationsprogrammen
entspricht eine „Spalte“ einer Komponentmenge
. Die in diesen Programmen häufig angebotene Sortierfunktion entspricht einer lexikographischen Zusammensetzung mit zu spezifizierender Rangfolge der Spalten, wobei es in der Regel zu jeder Spalte eine „Standard“-Ordnung gibt, die meist eine totale Quasiordnung, seltener eine echte Totalordnung (und dann höchstens auf der entsprechenden Spalte) ist. Es kann die „aufsteigende“ oder „absteigende“ Sortierreihenfolge gewählt werden.
Urbild einer Ordnungsrelation
Sei
eine nicht-leere Menge,
eine quasigeordnete Menge und
eine beliebige Abbildung. Dann kann vermöge
die Menge
quasigeordnet werden.
Ist
total quasigeordnet, so ist es auch
.
Ist
eine Halbordnung, so ist
eine Halbordnung genau dann, wenn
injektiv
ist.
Bemerkung:
- Seit 1991 gibt es für die digitale Codierung der Alphabete die internationale Norm des Unicode, die sich immer stärker durchzusetzen scheint. Über die Anordnung der Zeichen ist damit noch nicht allzu viel ausgesagt, da hier neben Sonderproblematiken wie den Umlauten zum Beispiel auch die Beachtung/Nichtbeachtung der Groß-/Kleinschreibung und Sonderzeichen die Abbildung zu einer nicht-injektiven machen kann.
Erweiterung
Ist
eine Quasiordnung und
eine beliebige nicht-leere Menge, so kann
wie folgt auf die Menge
erweitert werden:
.
Wie
ist auch
eine Quasiordnung.
Ist
total, so ist das Ergebnis wieder eine totale Quasiordnung.
Antisymmetrie geht im Allgemeinen verloren, das heißt, wenn die gegebene
Quasiordnung
eine Halbordnung (bzw. Totalordnung) ist, ist das Ergebnis nur dann wieder eine
Halbordnung (bzw. Totalordnung), wenn
aus genau einem Element besteht. Besteht
aus mehreren Elementen, so ist das Ergebnis nur noch eine Quasiordnung (bzw.
totale Quasiordnung).
ist die Quasiordnung
(mit der trivialen Ordnung
auf
).
Man kann sich
als eine Vergleichsfunktion
vorstellen, die auf ihren Schlüsselfeldern
in
operiert. Die Ergebnisordnung kann also ohne Verlust an Genauigkeit wieder mit
bezeichnet werden.
Zusammensetzung auf der Grundmenge
Hat man auf einer Menge
mehrere Quasiordnungen
,
so kann man ähnlich wie oben die lexikographischen Zusammensetzungen
bilden gemäß
.
Sie bilden eine (nicht-kommutative) Halbgruppe
mit dem (beidseitig) neutralen
Element .
ist eine Verfeinerung von
.
Das heißt auch, dass eine einer (auf ganz
totalen) Totalordnung nachgeschaltete Quasiordnung nichts mehr ändert.
Beispiel:
- Sei
die Menge der natürlichen Zahlen,
mit der (nicht-injektiven) Eulerschen
-Funktion und
die übliche Kleinerrelation, dann ordnet die Totalordnung
-
die Zahlen 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 um zu 2, 3, 4, 6, 5, 8, 10, 12, 7, 9, 11 wegen 1, 2, 2, 2, 4, 4, 4, 4, 6, 6, 10 für die -Werte.
Einschränkung einer Quasiordnung
In naheliegender Weise wird von einer Quasiordnung
die Einschränkung
auf eine Teilmenge
gebildet.
Bemerkung:
- Die Definitionsbereiche sind in der Regel konzeptionell unendliche Mengen. Insoweit können Aussagen über die Eigenschaften der Ordnungsrelationen (insbesondere über die Transitivität) nur aus mathematischen Überlegungen stammen. Die Belegungen in den Anwendungen der Informatik sind natürlich stets endlich.
Intervalle
Ähnlich wie bei den Zahlen lässt sich allgemeiner bei quasigeordneten Mengen ein Intervallbegriff einführen – in einer Notation, wie man sie von der Schule her kennt:
Die Duplikatsklasse von
ist dann
.
Für uneigentliche Intervalle gibt es die Notationen:
Fußnoten
- ↑ auch als quasi-lexikographische Ordnung bezeichnet (im Englischen quasi-lexicographic, radix, length-plus-lexicographic oder shortlex order)
Siehe auch



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 23.11. 2022