Brechungsindex
![](bilder/Snells_law_wavefronts.gif)
Der Brechungsindex, auch Brechzahl oder optische Dichte, seltener refraktiver Index, früher auch Brechungszahl genannt, ist eine optische Materialeigenschaft. Er ist das Verhältnis der Wellenlänge des Lichts im Vakuum zur Wellenlänge im Material, und damit auch der Phasengeschwindigkeit des Lichts im Vakuum zu der im Material. Der Brechungsindex ist eine Größe der Dimension Zahl, und er ist im Allgemeinen von der Frequenz des Lichts abhängig, was Dispersion genannt wird.
An der Grenzfläche zweier Medien unterschiedlicher Brechungsindizes wird Licht gebrochen und reflektiert. Dabei nennt man das Medium mit dem höheren Brechungsindex das optisch dichtere.
Beachte, dass mit „optische Dichte“ zuweilen auch ein Maß für die Extinktion bezeichnet wird.
Physikalische Grundlagen
![](/png/fresnel_equations_-_reflectance_(DE).png)
![](/png/komplexe_Brechzahl_von_Silicium_med.png)
Die Bezeichnung „Brechungsindex“ kommt vom Begriff Brechung und seinem
Auftreten im Snelliusschen
Brechungsgesetz. Der Brechungsindex
ist eine Größe
der Dimension Zahl. Er gibt das Verhältnis der Vakuumlichtgeschwindigkeit
zur Ausbreitungsgeschwindigkeit
des Lichts im Medium an:
Komplexer Brechungsindex
Beschreibt man die zeitliche und räumliche Ausbreitung einer
elektromagnetischen Welle der Kreisfrequenz
mit Hilfe der Wellengleichung
,
so stellt man fest, dass man sowohl den klassischen Brechungsindex als auch
die Dämpfung der Welle in einem komplexwertigen
Brechungsindex
vereinen und mittels einer Gleichung sowohl das zeitliche als auch das räumliche
Fortschreiten der Welle und deren Absorption
beschreiben kann. Der reellwertige Anteil
,
der meist größer als 1 ist, verkürzt die Wellenlänge im Medium,
,
der komplexwertige Anteil
dämpft die Welle
.
Hierbei sind unterschiedliche, gleichwertige Darstellungen für den komplexwertigen Brechungsindex üblich:
- als Summe von Realteil und dem mit der imaginären
Einheit
multiplizierten Imaginärteil einer komplexen Zahl:
oder
oder
- als Differenz von Realteil und dem mit
multiplizierten Imaginärteil einer komplexen Zahl:
oder
- als Produkt aus dem reellen Brechungsindex
und einer komplexen Zahl:
Das in einigen Darstellungen enthaltene Minuszeichen vor dem Imaginärteil
wird gewählt, damit der Imaginärteil (,
oder
bzw.
)
bei absorbierendem Material ein positives Vorzeichen
bekommt.
Dieser Imaginärteil wird Extinktionskoeffizient
oder Absorptionsindex genannt.
Davon abweichend bezeichnen Autoren, die die Darstellung als Produkt verwenden,
die Größe
,
also den Imaginärteil geteilt durch
,
als Absorptionsindex.
Sowohl der Realteil als auch der Imaginärteil des Brechungsindex sind, wenn sie ungleich 1 sind, von der Frequenz und damit von der Wellenlänge abhängig. Dieser als Dispersion bezeichnete Effekt ist unvermeidlich und ermöglicht die Zerlegung von weißem Licht in seine Spektralfarben an einem Prisma. Die Frequenzabhängigkeit des Brechungsindex in Materie kann recht gut über das Modell des Lorentz-Oszillators beschrieben werden.
Da die Reaktion eines optischen Mediums auf eine elektromagnetische Welle kausal sein muss, ist der komplexwertige Brechungsindex eine meromorphe Funktion, Real- und Imaginärteil sind über die Kramers-Kronig-Beziehungen verkoppelt.
Anisotroper Brechungsindex
In anisotropen Medien ist der Brechungsindex kein Skalar, sondern ein Tensor zweiter Stufe. Wellenvektor und Ausbreitungsrichtung stimmen dann nicht mehr überein.
Doppelbrechung
Ist der Brechungsindex von der Polarisation (und damit zwangsweise auch von der Richtung) abhängig, spricht man von Doppelbrechung.
Verknüpfung mit Permittivität und Permeabilität
Der komplexe Brechungsindex ist mit der Permittivitätszahl
(dielektrische Funktion)
und der Permeabilitätszahl
verknüpft:
Dabei sind alle Größen im Allgemeinen komplex und frequenzabhängig. Permittivitäts- und der Permeabilitätszahl sind Näherungen, die sich je nach System besser oder schlechter zur Beschreibung des Polarisierungs- und des Magnetisierungs-Effekts eignen.
Die Wellenlängenabhängigkeit des Brechungsindexes eines Materials lässt sich
über die elektrische
Suszeptibilität theoretisch ermitteln. Diese Größe erfasst die Beiträge der
verschiedenen Mechanismen im Material zu seinen Eigenschaften und mündet in der
komplexen
Permittivität. Im Fall von nichtmagnetischem Material ist ,
und der komplexe Brechungsindex kann direkt aus Real- (
)
und Imaginärteil (
)
der Permittivitätszahl angegeben werden:
Durch Vergleich mit dem komplexen Brechungsindex in den beiden o.g.
Darstellungen 1 und 2 (Summe bzw. Differenz) kann man die Größen
und
berechnen:
Gruppenbrechungsindex
Das Verhältnis der Vakuumlichtgeschwindigkeit
zur Gruppengeschwindigkeit
des Lichts im Medium ist der Gruppenbrechungsindex
.
Über die Gruppengeschwindigkeit ist diese Materialeigenschaft
von der Wellenlänge
des Lichts abhängig:
Im Vakuum hat die Gruppengeschwindigkeit den gleichen Wert wie die Phasengeschwindigkeit, zudem ist dieser Wert unabhängig von der Wellenlänge des Lichts. Im Medium ist das nicht notwendigerweise der Fall; besonders bei Wellenlängen, für die das Material große Dispersion zeigt, ergeben sich Unterschiede.
Andere Definitionen
![](/png/brechzahl-einfach.png)
Die Definition des Brechungsindex erfolgte oben über die Geschwindigkeit, mit der sich Licht im Material ausbreitet. Dieses Vorgehen ist naheliegend, aber nicht in allen Fällen anwendbar. Beispielsweise können Metamaterialien dem geometrischen Strahlengang nach einen negativen Brechungsindex (s.u.) aufweisen. Ein negativer Wert der Lichtgeschwindigkeit ist jedoch nicht sinnvoll definiert.
Alternative Definitionen des Brechungsindex, bei denen dieses Problem nicht auftritt, sind:
- Über das Fermatsche Prinzip, nach welchem das Licht zwischen zwei Punkten jenen Weg zurücklegt, für den es einen Extremwert der Zeit benötigt.
- Über das Huygenssche Prinzip, das besagt, dass jeder Punkt einer Wellenfront als Ausgangspunkt einer Kugelwelle angesehen werden kann und die Interferenz aller dieser Wellen die weiter propagierende Wellenfront ergibt.
- Über die Strahlenoptik. Nach dem erwähnten Snellius-Brechungsgesetz entspricht n dem Sinus-Verhältnis von Einfallswinkel und gebrochenem Winkel.
Alle diese Definitionen liefern für gewöhnliche optische Materialien denselben Wert.
Brechungsindex der Luft und anderer Stoffe
Material | Brechungsindex n |
---|---|
Vakuum | exakt 1 |
Luft (bodennah) | 1,000292 |
Plasma | 0 … 1 |
Eis | 1,31 |
Wasser | 1,33 |
menschl. Augenlinse | 1,35 … 1,42 |
Flussspat (Calciumfluorid) | 1,43 |
Tetrachlorkohlenstoff (liqu.) | 1,46 |
Celluloseacetat (CA) | 1,48 |
Kronglas | ≈ 1,46 … 1,65 |
Polystyrol (PS) | 1,58 |
Polycarbonat (PC) | 1,585 |
Epoxidharz | ≈ 1,55 … 1,63 |
Flintglas | ≈ 1,56 … 1,93 |
Kohlenstoffdisulfid (liqu.) | 1,63 |
Rubin (Aluminiumoxid) | 1,76 |
Zirkon | 1,92 |
Schwefel | 2,00 |
Zinksulfid | 2,37 |
Diamant | 2,42 |
Titandioxid (Rutil) | 3,10 |
Bleisulfid (PbS) | 3,90 |
Größenordnungen
![](/png/Brechungsindex_Wasser_1-de.svg.png)
Das Vakuum hat per Definition einen Brechungsindex von exakt 1. Dies stellt zum einen einen Referenzwert dar, zum anderen ergibt es sich aus der Ausbreitungsgeschwindigkeit von Licht im Vakuum, die genau der Vakuumlichtgeschwindigkeit entspricht.
In „normalen“ Stoffen gibt es bewegliche elektrische Ladungsträger (und
bewegliche magnetische Dipole). Diese bewirken durch Kompensation des
elektrischen (und des magnetischen) Feldes eine verlangsamte Ausbreitung des
elektromagnetischen Feldes. Dies wird durch den Brechungsindex
beschrieben. Dieses Kompensationsverhalten ist allerdings frequenzabhängig, da
die Ladungsträger (und magnetischen Dipole) nur bis zu einer bestimmten Frequenz
dem elektrischen Feld folgen können. So fangen Stoffe bei einem bestimmten
Brechungsindex bei sehr kleinen Frequenzen an (Wasser z.B. bei
)
und reduzieren diesen Wert hin zu hohen Frequenzen. Jede Reduktion erfolgt in
der Nähe einer Elektronenresonanz (oder Magnetdipolresonanz) des Stoffes und
führt zu einer zunächst vergrößerten Brechzahl, die sich danach verkleinert und
anschließend auf einem niedrigeren Niveau wieder einpegelt.
Im sichtbaren Bereich sind die Brechungsindizes transparenter bzw. schwach (bis mittel) absorbierender Materialien in der Regel größer als 1. Bei elektrisch leitfähigen, und daher stark absorbierenden Materialien wie Metallen herrschen andere physikalische Bedingungen. Sichtbares Licht kann nur wenige Nanometer in solche Materialien eindringen. Aus der oben genannten Beziehung mit der Permittivität und Permeabilität ergibt sich daher zwar oft ein Realteil des Brechungsindexes zwischen 0 und 1, dies kann aber nicht in der gleichen Weise interpretiert werden wie bei transparenten Materialien (Bezug zur Lichtgeschwindigkeit), da der komplexe Brechungsindex in diesem Fall vom Imaginärteil dominiert wird.
Darüber hinaus gibt es für jeden Stoff jedoch Wellenlängenbereiche
(z.B. oberhalb des sichtbaren Bereichs), bei denen der Realteil des
Brechungsindexes kleiner als 1 ist (aber positiv bleibt). So ist für sehr kleine
Wellenlängen (Röntgenstrahlung,
Gammastrahlung) der
Brechungsindex immer kleiner als 1 und nähert sich mit sinkender Wellenlänge der
1 von unten an. Daher hat sich beispielsweise im Röntgenbereich die Darstellung
etabliert, wobei typische Werte für
zwischen 10−9 und 10−5 liegen (stark abhängig von der
Wellenlänge, abhängig von der Ordnungszahl
und Dichte des
Materials).
Luft
Der Brechungsindex für sichtbares Licht von Luft beträgt auf Meeresniveau 1,00028 (trockene Luft bei Normatmosphäre). Er hängt von der Dichte und damit von der Temperatur der Luft ab, sowie von der speziellen Zusammensetzung der Luft – insbesondere der Luftfeuchtigkeit. Da die Luftdichte nach oben – entsprechend den Gasgesetzen in einem Schwerefeld, siehe barometrische Höhenformel – exponentiell abnimmt, beträgt der Brechungsindex in 8 km Höhe nur mehr 1,00011. Durch diese astronomische Refraktion scheinen Sterne höher zu stehen, als das ohne Atmosphäre der Fall wäre. Im technischen Bereich wird manchmal zur Vereinfachung der Brechungsindex der Materialien auf den von Luft bezogen.
Wellenlängenabhängigkeit
![](/png/dispersionskurven.png)
Da wie in der Einleitung beschrieben der Brechungsindex jedes Materials von der Wellenlänge des einfallenden Lichts abhängt (was auch bei elektromagnetischer Strahlung außerhalb des sichtbaren Bereichs gilt), wäre es notwendig, diesen auch wellenlängenabhängig (tabellarisch oder als Funktion) anzugeben. Da dies aber für viele einfache Anwendungen nicht notwendig ist, wird der Brechungsindex üblicherweise für die Wellenlänge der Natrium-D-Linie (589 nm) angegeben. In der Abbildung sind als Beispiel Kurven des wellenlängenabhängigen Brechungsindex einiger Glassorten dargestellt. Sie zeigen den typischen Verlauf einer normalen Dispersion.
Die Stärke der Dispersion lässt sich im sichtbaren Spektralbereich in erster Näherung durch die Abbe-Zahl beschreiben, genauere Abschätzung ergeben sich durch Anwendung der Sellmeier-Gleichung.
Brechungsindex des Plasmas
Jede linear polarisierte Welle kann als Überlagerung zweier zirkularer Wellen mit entgegengesetztem Umlaufsinn interpretiert werden. Verläuft die Ausbreitungsrichtung parallel zu den Magnetfeldlinien, ergeben sich für die Brechzahlen n folgende Formeln:
Dabei ist
die Frequenz der Welle,
die Plasmafrequenz
der freien Elektronen im Plasma und
die Gyrationsfrequenz
dieser Elektronen. Der Unterschied beider Formeln verschwindet, falls der
Wellenvektor mit der Richtung des Magnetfeldes einen rechten Winkel einschließt,
weil dann
ist.
Faraday-Effekt
Falls
positiv ist, lässt sich damit die Phasengeschwindigkeit
der Welle
und damit wiederum die Wellenlänge
berechnen. Weil sich die rechts- bzw. linksdrehenden zirkularen Wellen in ihren Wellenlängen unterscheiden, ist eine davon nach einer gewissen Weglänge um einen kleinen Winkel weiter gedreht als die andere. Der resultierende Vektor (und damit die Polarisationsebene) als Summe der beiden Komponenten wird deshalb beim Durchlaufen des Plasmas gedreht, was man als Faraday-Rotation bezeichnet. Nach einer längeren Strecke kann die Gesamtdrehung sehr groß sein und ändert sich wegen der Bewegung der Ionosphäre ständig. Eine Sendung in vertikaler Polarisation kann den Empfänger in unregelmäßigen Zeitabständen auch horizontal polarisiert erreichen. Falls die Empfangsantenne darauf nicht reagiert, ändert sich die Signalstärke sehr drastisch, was als Fading bezeichnet wird.
Beim Funkverkehr mit Satelliten unterscheiden sich
und
wegen der wesentlich höheren Frequenzen nur geringfügig, entsprechend geringer
ist auch die Faradayrotation.
Polarisationsabhängige Absorption
Die ungebundenen freien Elektronen der Ionosphäre
können sich schraubenförmig um die Magnetfeldlinien bewegen und entziehen dabei
einer parallel laufenden elektromagnetischen Welle Energie, wenn Frequenz
und Drehrichtung übereinstimmen. Diese Zyklotronresonanz
kann nur bei der rechtszirkulär polarisierten außerordentlichen
Welle beobachtet werden, weil für
der Nenner in obiger Formel Null wird. Die linkszirkulär polarisierte
ordentliche Welle kann im Plasma auf diese Weise keine Energie verlieren.
Die Feldlinien des Erdmagnetfeldes sind so orientiert, dass sie auf der nördlichen Halbkugel von der Ionosphäre zur Erde zeigen, man „blickt“ ihnen gewissermaßen entgegen, weshalb rechts und links vertauscht werden müssen. Deshalb wird hier eine nach oben abgestrahlte linkszirkuläre Welle absorbiert, bei HAARP wird so die Ionosphäre aufgeheizt.
Strahlt man dagegen (auf der nördlichen Halbkugel) eine Welle im unteren
Kurzwellenbereich mit rechtem Drehsinn vertikal nach oben ab, verliert
diese in der Ionosphäre keine Energie durch Zyklotronresonanz und wird in
einigen hundert Kilometern Höhe von der Ionosphäre reflektiert, falls die
Plasmafrequenz nicht überschritten wird.
Strahlt man eine linear polarisierte Welle nach oben ab, heizt die Hälfte der
Sendeenergie die Ionosphäre und nur der Rest kommt linkszirkular polarisiert
wieder hier unten an, weil sich bei Reflexion der Drehsinn ändert.
Beim Funkverkehr mit Satelliten liegen die Frequenzen weit oberhalb der Plasmafrequenz der Ionosphäre, um vergleichbar gravierende Phänomene zu vermeiden.
Messung im optischen Bereich
Zur experimentellen Bestimmung des Brechungsindex eines Mediums mit
(zum Beispiel nicht magnetisch)
kann man zum Beispiel den Brewster-Winkel
beim Übergang von Luft in dieses Medium messen. Für
diesen Fall gilt
.
Für die Messung wird ein Refraktometer angewandt.
Eine Abschätzung des Brechungsindexes ist mit der sogenannten Immersionsmethode durch das Eintauchen eines Gegenstands in durchsichtige Flüssigkeiten mit verschiedener Dichte möglich. Wenn der Brechungsindex von Gegenstand und Flüssigkeit identisch sind, verschwinden die Konturen des Gegenstands. Dieses Verfahren kann leicht eingesetzt werden, um zum Beispiel Rubine oder Saphire mit einem Brechungsindex von rund 1,76 zu identifizieren, indem sie in eine geeignete Schwerflüssigkeit eingetaucht werden, wie beispielsweise Diiodmethan (Brechungsindex = 1,74).
Anwendung
Der Brechungsindex ist eine der zentralen Bestimmungsgrößen für optische Linsen. Die Kunst der Optikrechnung zur Auslegung optischer Instrumente (Objektive, Messinstrumente, Belichtungsanlagen der Fotolithografie) beruht auf der Kombination verschiedener brechender Linsenoberflächen mit passenden Glassorten.
In der Chemie und Pharmazie wird der
Brechungsindex bei einer bestimmten Temperatur oft eingesetzt, um flüssige
Substanzen zu charakterisieren. Die Temperatur und die Wellenlänge, bei der der
Brechungsindex bestimmt wurde, werden dabei dem Symbol für den Brechungsindex
angefügt, für 20 °C und die Natrium-D-Linie z.B. .
Die Bestimmung des Brechungsindex erlaubt eine einfache Bestimmung des Gehaltes einer bestimmten Substanz in einem Lösungsmittel:
- Zucker in Wein, siehe Grad Brix und Grad Oechsle
- Harz in Lösungsmittel
- Gefrierschutzmittel (meist Ethylenglycol) im Kühlwasser von Verbrennungsmotoren oder thermischen Solaranlagen
Zusammenhang mit dem atomaren Aufbau
Bei kristallinen Materialien
Der Brechungsindex eines kristallinen Materials hängt direkt von seinem atomaren Aufbau ab, da sich der Grad der Kristallinität und das Kristallgitter eines Festkörpers auf seine Bandstruktur auswirken. Im sichtbaren Spektrum zeigt sich dies beispielsweise bei der Verschiebung der Bandlücke.
Durch einen anisotropen Kristallaufbau können zusätzlich Effekte wie die Doppelbrechung
entstehen, bei der das Material für unterschiedlich polarisiertes Licht
abweichende Brechungsindizes besitzt. In diesem Fall ist die Indikatrix ein dreiachsiges
Ellipsoid (Indexellipsoid),
und es ergeben sich die Hauptbrechungsindizes ,
und
(auch als n1, n2
und n3 bezeichnet), deren Indizierung stets so
vorgenommen wird, dass gilt:
.
In den wirteligen Kristallsystemen (trigonal, tetragonal und hexagonal) fällt die Hauptachse des Tensors, die auch als optische Achse bezeichnet wird, mit der kristallographischen c-Achse zusammen. Bei diesen optisch einachsigen Materialien
- entspricht
dem Brechungsindex des ordentlichen Strahls (engl. ordinary ray) und wird meist mit no, nor, n? oder
bezeichnet.
- Analog entspricht
(
) dem Brechungsindex für den außerordentlichen Strahl (engl. extraordinary ray) und wird als nao, ne, ne oder
bezeichnet.
Siehe auch Konstruktion des Indexellipsoids und des Fresnel-Ellipsoids.
Bei teilkristallinen und amorphen Materialien
![](/png/Dichte_brechzahl.png)
Bei teilkristallinen oder amorphen Materialien hat der atomare Aufbau ebenfalls deutlichen Einfluss auf den Brechungsindex. So erhöht sich in der Regel der Brechungsindex von Silikat-, Bleisilikat- und Borosilikatgläsern mit ihrer Dichte.
Trotz dieses allgemeinen Trends ist die Beziehung zwischen Brechungsindex und Dichte nicht immer linear, und es treten Ausnahmen auf, wie im Diagramm dargestellt:
- einen relativ großen Brechungsindex und eine kleine Dichte kann man mit Gläsern erhalten, die leichte Metalloxide wie Li2O oder MgO enthalten
- das Gegenteil wird mit PbO- und BaO-haltigen Gläsern erreicht.
Negative Brechungsindizes
Geschichte
1968 beschrieb der sowjetische Physiker Wiktor Wesselago das seltsame Verhalten von Materialien mit negativem Brechungsindex: „Würde die Herstellung gelingen, könnte man damit Linsen fertigen, deren Auflösungsvermögen weit besser wäre als das von Linsen aus gewöhnlichen optischen Werkstoffen“.
1999 schlug Sir John Pendry ein Design für Metamaterialien mit negativem Brechungsindex für Mikrowellen vor, das kurz darauf realisiert wurde.
2003 hat eine Gruppe um Yong Zhang in Colorado entdeckt, dass Kristalle aus Yttrium-Vanadat (YVO4), einer Verbindung von Yttrium, Vanadium und Sauerstoff, auch ohne Weiterverarbeitung einen negativen Brechungsindex für Lichtwellen eines großen Frequenzbereichs aufweisen.[23] Der Kristall besteht aus zwei ineinandergeschachtelten Kristallgittern mit symmetrischen optischen Achsen. Die negative Lichtbrechung tritt aber nur in einem gewissen Winkelbereich des Einfallswinkels auf. In künftigen Experimenten wollen die Forscher weitere vermutete Eigenschaften der negativen Brechung prüfen – wie etwa die Umkehrung des Dopplereffekts und der Tscherenkow-Strahlung.
2007 stellten Vladimir Shalaev und seine Kollegen von der Purdue-Universität ein Metamaterial mit negativem Brechungsindex für Strahlung im nahen Infrarotbereich vor.
2007 ist es Physikern um Ulf Leonhardt von der Universität St Andrews unter Verwendung von Metamaterial mit negativem Brechungsindex („linkshändiges Material“) gelungen, den sogenannten Casimir-Effekt umzukehren (reverser Casimir-Effekt, auch Quanten-Levitation genannt). Dies eröffnet die Zukunftsperspektive auf eine (nahezu) reibungslose Nanotechnologie.
Nicht durch Beugung begrenzte Linsen
Im Jahr 2000 zeigte John Pendry, dass mit einem Material mit negativem Brechungsindex eine Linse hergestellt werden kann, deren Auflösung nicht durch das Beugungslimit begrenzt ist. Eine einschränkende Bedingung ist dabei, dass sich die Linse im Nahfeld des Objekts befinden muss, damit die evaneszente Welle noch nicht zu stark abgeklungen ist. Für sichtbares Licht bedeutet das einen Abstand von etwa < 1 µm. Einige Jahre später gelang es Forschern um Xiang Zhang an der Universität Berkeley, ein Mikroskop mit einer Auflösung von einem Sechstel der Wellenlänge des verwendeten Lichts zu bauen.
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 29.03. 2024