Virtuelles Teilchen

Ein virtuelles Teilchen, intermediäres Teilchen oder Teilchen in einem virtuellen Zustand ist ein Konzept aus der Quantenfeldtheorie, wo es zur theoretischen Beschreibung der fundamentalen Wechselwirkungen der Elementarteilchen benötigt wird. Man kann sich den virtuellen Zustand eines Teilchens als einen kurzlebigen Zwischenzustand vorstellen, der während einer Wechselwirkung zweier Teilchen auftritt, die sich in „normalen“, also reellen Zuständen befinden. Das virtuelle Teilchen stellt als Austauschteilchen diese Wechselwirkung eigentlich erst her, ist im virtuellen Zustand nach außen aber niemals sichtbar. So wird z.B. in der Quantenelektrodynamik die elektromagnetische Wechselwirkung zweier Elektronen durch den Austausch eines virtuellen Photons vermittelt. Der Nachweis ist indirekt: Die mithilfe dieses Konzepts berechneten Werte werden im Experiment mit einer Genauigkeit von bis zu 1 : 10 Mrd. bestätigt. Prinzipiell kann jedes Teilchen reelle Zustände und virtuelle Zustände annehmen.
Virtuelle Teilchen treten bei jeder der drei Arten von Wechselwirkung auf, die durch die Quantenfeldtheorie beschrieben werden können. Virtuelle Teilchen sind Bestandteile der Feynman-Diagramme, die in einer quantenfeldtheoretischen Störungsrechnung jeweils einen bestimmten Term wiedergeben. Ein Feynman-Diagramm besteht aus verschiedenen Linien, die sich an Knotenpunkten, den Vertices, treffen. Man unterscheidet die äußeren Linien (solche, die ein freies Ende haben) für ein- bzw. auslaufende Teilchen in einem reellen Zustand, und die inneren Linien (solche, die zwei Vertices verbinden) für virtuelle Teilchen. Im Kontext der Vakuumfluktuationen werden auch Feynman-Diagramme ohne äußere Linien betrachtet, in denen also Teilchen aus dem Vakuum entstehen und wieder zerfallen und so zur Vakuumenergie beitragen. Hier treten ausschließlich virtuelle Teilchen auf.
Eigenschaften
Der wesentliche Unterschied zwischen den (real beobachtbaren) reellen
Teilchen und den unbeobachtbaren virtuellen Teilchen ist, dass Energie
und Impuls
im virtuellen Zustand nicht die Energie-Impuls-Beziehung
erfüllen, wenn
die wohlbestimmte Masse desselben Teilchens in reellem Zustand ist. Man kann
daher sagen, dass virtuelle Teilchen keine definierte Masse besitzen, im
Fachjargon: „sie sind nicht auf die Massenschale limitiert“
(oder sie sind nicht „on-shell“). Beispielsweise überträgt das virtuelle Photon
bei der elastischen Streuung zweier Elektronen, im Schwerpunktsystem betrachtet,
nur Impuls, aber keine Energie.
Diese Eigenschaft kann helfen, sich das Verhalten eines virtuellen Teilchens
zu veranschaulichen: Da Energie- und Impulserhaltungsatz auch für ein virtuelles
Teilchen nicht verletzt sind, kommen diesem Werte für Energie
und Impuls
zu, die für einen reellen Zustand gemäß der Energie-Impuls-Beziehung verboten
sind. Die häufig zu lesende Begründung, dass gemäß der Energie-Zeit-Unschärferelation
die Energieerhaltung kurzzeitig verletzt sein darf, ist eher irreführend. Die
Strecke, die das Teilchen in dieser Zeit mit Lichtgeschwindigkeit zurücklegen
könnte, begrenzt den denkbaren Radius irgendwelcher Wirkungen. Bei
niederenergetischen Vorgängen ist die Reichweite gerade die Compton-Wellenlänge
des betreffenden Teilchens. So wird die endliche Reichweite der Kernkräfte oder der Schwachen
Wechselwirkung in etwa verständlich. Demnach ist z.B. der radioaktive
Beta-Zerfall
deshalb möglich, weil das betreffende Austauschteilchen (das W-Boson) als virtuelles
Teilchen auch ohne Energiezufuhr entstehen kann. Aufgrund seiner großen Masse
kann es sich aber nur im Bereich eines tausendstel Protonenradius auswirken, was
die vergleichsweise geringe Übergangswahrscheinlichkeit erklärt und damit der
Wechselwirkung das Beiwort „schwach“ eingetragen hat. In derselben Weise ist es
auch möglich, dass Hinweise auf die Existenz sehr schwerer Teilchen bereits
beobachtet werden, bevor die in Teilchenbeschleunigern
erreichte Kollisionsenergie ausreicht, sie auch in reellem Zustand zu
produzieren.
Formal lassen sich virtuelle Zustände daran erkennen, dass in der Störungstheorie über sie summiert wird. Die Anfangs- und Endzustände der Störungstheorie dagegen werden als die reellen Zustände bezeichnet. Als Beispiel betrachte man die zweite Ordnung der quantenmechanischen Störungsentwicklung:
Hier wäre
ein reeller Zustand, die Zustände
dagegen werden als virtuelle Zustände benutzt.
Zitate
„Virtuelle Teilchen sind spontane Fluktuationen eines Quantenfeldes. Reale Teilchen sind Anregungen eines Quantenfeldes mit einer für Beobachtung brauchbaren Beständigkeit. Virtuelle Teilchen sind Transienten, die in unseren Gleichungen erscheinen, nicht aber in Messgeräten. Durch Energiezufuhr können spontane Fluktuationen über einen Schwellwert verstärkt werden, was bewirkt, dass (eigentlich sonst) virtuelle Teilchen zu realen Teilchen werden.“



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.11. 2021