Messunsicherheit

Zu einem Messergebnis als Näherungswert für den wahren Wert einer Messgröße soll immer die Angabe einer Messunsicherheit gehören. Diese grenzt einen Wertebereich ein, innerhalb dessen der wahre Wert der Messgröße mit einer anzugebenden Wahrscheinlichkeit liegt (üblich sind Bereiche für ungefähr 68 % und ungefähr 95 %). Dabei soll der als Messergebnis verwendete Schätzwert oder Einzelmesswert bereits um bekannte systematische Abweichungen korrigiert sein.

Die Messunsicherheit ist positiv und wird ohne Vorzeichen angegeben. Messunsicherheiten sind selbst auch Schätzwerte. Die Messunsicherheit kann auch kurz Unsicherheit genannt werden. Der früher in ähnlichen Zusammenhängen gebräuchliche Begriff Fehler ist nicht mit dem Konzept der Messunsicherheit synonym.

In aller Regel liegt eine Normalverteilung vor, und die Messunsicherheit legt einen zum Schätzwert der Messgröße symmetrisch liegenden Wertebereich fest. Sie wird üblicherweise als Standardunsicherheit u oder als erweiterte Unsicherheit 2u angegeben.

Ermittlung der Messunsicherheit

Analytisch-rechnerische Methode nach ISO/IEC Guide 98-3

Eine Messunsicherheit ergibt sich aus der Kombination von einzelnen Beiträgen (Komponenten) der Eingangsgrößen einer Messung. Laut ISO/IEC Guide 98-3 (GUM) kann eine Komponente der Messunsicherheit auf zwei Weisen ermittelt werden:

Beide Methoden beruhen auf Wahrscheinlichkeitsverteilungen. Bei Typ-A wird die Varianz durch Messwiederholungen bestimmt und bei Typ-B wird auf andere Quellen zurückgegriffen. Die Ermittlungsmethode Typ-A folgt der frequentistischen und Typ-B der bayesschen Interpretation der Wahrscheinlichkeit. Die Ermittlungsmethode Typ-B basiert auf der Bayes-Laplace-Theorie.

Ermittlung mithilfe von Ringversuchsdaten nach ISO 21748

In einem Ringversuch analysieren mehrere Labors idealerweise identische Proben mit dem gleichen Messverfahren. Die Auswertung der Resultate führt zu zwei Parametern, die für die Ermittlung der Messunsicherheit von großer Bedeutung sind:

In den beiden Standardabweichungen sind alle oder zumindest die meisten Unsicherheitskomponenten enthalten, die nach der Methode ISO/IEC 98-3 einzeln berücksichtigt werden müssen. Dies gilt auch für Komponenten des Typs 2, die im einzelnen Labor nicht durch Mehrfachmessung erfasst werden können. Wenn die in ISO 21748 genannten Bedingungen erfüllt sind, ergibt sich die Standardunsicherheit u im einfachsten Fall durch folgende Beziehung:

{\displaystyle u=s_{R}={\sqrt {s_{L}^{2}+s_{r}^{2}}}}

sR ist die Vergleichstandardabweichung. In gewissen Fällen sind zusätzliche Komponenten wie Probenahme, Probevorbereitung oder Heterogenität der Probe einzurechnen. Ringversuchsdaten können vom Wert der Messgröße abhängen.

Metrologische Bedeutung

Die Messunsicherheiten in Wissenschaft und Technik sollen drei Aufgaben erfüllen.

Quantitative Angaben

Ein weiterer Kennwert ist die erweiterte Unsicherheit U=k\cdot u. Dieser Kennwert kennzeichnet einen Wertebereich, der den wahren Wert der Messgröße mit einer bestimmten Wahrscheinlichkeit enthält. Für den darin enthaltenen Erweiterungsfaktor k soll vorzugsweise k=2 verwendet werden. Bei k=2 beträgt die Wahrscheinlichkeit ungefähr 95 %.

Im Sonderfall k=1 spricht man (in Anlehnung an die Bezeichnung Standardabweichung) von einer Standardunsicherheit. Hier beträgt die Wahrscheinlichkeit ungefähr 68 %.

Zur Notation
 

am Beispiel eines Messergebnisses l=23{,}478\,2\;\mathrm m mit einer Standardmessunsicherheit u=0{,}003\,2\;\mathrm m:

Die Schreibweise mit ± soll bei Unsicherheiten, wenn immer möglich, vermieden werden,
  • wenn nicht klargestellt wird, für welche Kenngröße der Messunsicherheit bzw. für welchen Erweiterungsfaktor sie steht,
  • weil die Schreibweise mit ± auch für andere Angaben wie den Vertrauensbereich oder Toleranzen verwendet wird.

Hinterfragung der Fehlerrechnung

Die „klassische“ Gauß'sche Fehlerrechnung behandelt ausschließlich zufällige Abweichungen. Indessen hatte schon Gauß auf die Existenz und Bedeutung sogenannter unbekannter systematischer Messabweichungen hingewiesen. Diese entstehen durch zeitlich konstante, nach Betrag und Vorzeichen unbekannte Störgrößen, sie liegen in der Regel in einer mit den zufälligen Abweichungen vergleichbaren Größenordnung. Unbekannte systematische Messabweichungen müssen mit Hilfe von Intervallen eingegrenzt werden.

Der heutige Mainstream der Metrologie interpretiert den Prozess des Schätzens der Messunsicherheit als „technische Vorschrift“, der einheitlich zu praktizieren ist. Im Bereich des gesetzlichen Messwesens und des Kalibrierdienstes in Deutschland wird empfohlen, Messunsicherheiten nach DIN festzulegen. Dieser Leitfaden zur Angabe der Unsicherheit beim Messen entspricht der europäischen Vornorm ENV 13005, welche die Empfehlung der ISO übernimmt; er hat auch unter dem Akronym „GUM“ Bekanntheit erlangt.

DIN V ENV 13005 ist zurückgezogen worden. Der Regelsetzer empfiehlt die Anwendung der „Technischen Regel“ ISO/IEC Guide 98-3:2008-09 Messunsicherheit – Teil 3: Leitfaden zur Angabe der Unsicherheit beim Messen.

Exakte Werte

„Exakter Wert“ ist ein Begriff aus der Metrologie. In diesem Kontext haben exakte Werte keine Messunsicherheit und keine systematische Abweichung.

So sind einige fundamentale Naturkonstanten exakt per Definition, andere nicht oder nicht mehr (siehe Definition der SI-Basiseinheiten). Beispielsweise ist die magnetische Feldkonstante jetzt mit einer Unsicherheit versehen. Bei den mit einer gewissen Anzahl von Stellen exakt definierten Größen ist nicht der Zahlenwert unsicher, sondern die Realisierung der durch die Größe und den Zahlenwert definierten Einheit.

Andere exakte Werte sind mathematisch definierte irrationale Zahlen, wie die Kreiszahl \pi als Verhältnis von Umfang und Durchmesser von Kreisen (in euklidischer Geometrie).

Manche glatte Zahlen in Berechnungen sind exakte Werte, etwa die willkürlich definierten Umrechnungsfaktoren 12 zwischen Troy Pound und Feinunze und 90 zwischen der Größe rechter Winkel und dem Winkelgrad.

Exakte rationale Zahlen können in Formeln als Brüche geschrieben werden, also beispielsweise 1/2 und nicht 0{,}5, um der falschen Annahme vorzubeugen, dass es eine implizite Unsicherheit in der letzten Dezimalstelle geben könnte.

Siehe auch

Literatur

Teil 1: Grundbegriffe (Ausgabe: 1995-01)
Teil 2: Begriffe für Messmittel (Ausgabe: 2005-10)
Teil 3: Auswertung von Messungen einer einzelnen Meßgröße, Meßunsicherheit (Ausgabe: 1996-05)
Teil 4: Auswertung von Messungen; Meßunsicherheit (Ausgabe: 1999-02)
Teil 1: Allgemeine Grundlagen und Begriffe (ISO 5725-1 : 1994) (Ausgabe: 1997-11)
Teil 2: Grundlegende Methode für Ermittlung der Wiederhol- und Vergleichpräzision eines vereinheitlichten Messverfahrens (ISO 5725-2:1994 einschließlich Technisches Korrigendum 1:2002) (Ausgabe: 2002-12)
Teil 3: Präzisionsmaße eines vereinheitlichten Messverfahrens unter Zwischenbedingungen (ISO 5725-3:1994 einschließlich Technisches Korrigendum 1:2001) (Ausgabe: 2003-02)
Teil 4: Grundlegende Methoden für die Ermittlung der Richtigkeit eines vereinheitlichten Messverfahrens (ISO 5725-4:1994) (Ausgabe: 2003-01)
Teil 5: Alternative Methoden für die Ermittlung der Präzision eines vereinheitlichten Messverfahrens (ISO 5725-5:1998) (Ausgabe: 2006-04)
Teil 6: Anwendung von Genauigkeitswerten in der Praxis [ISO 5725-6:1994 einschließlich Technisches Korrigendum 1:2001] (Ausgabe 2002-08)
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 20.10. 2024