Ergebnis (Stochastik)

Ein Ergebnis ist ein Begriff aus den Grundlagen der Stochastik. In der Literatur finden sich viele verschiedene Bezeichnungen, unter anderem auch Zufallsergebnis, Grundereignis, atomares Ereignis, Element eines Wahrscheinlichkeitsraums, Merkmal oder Elementarereignis. Die Bezeichnung als Elementarereignis ist jedoch zweideutig, siehe Abschnitt Elementarereignisse. Ergebnisse können auf zweierlei Arten eingeführt werden: entweder als Element der Ergebnismenge \Omega in einem Wahrscheinlichkeitsraum oder als möglicher Ausgang eines modellierten Zufallsexperimentes.

Definition

Bei der Definition von Ergebnissen gibt es zwei Herangehensweisen:

Meistens werden Ergebnisse mit \omega bezeichnet.

Beispiele

Beispiele für Ergebnisse als Ausgang eines Zufallsexperimentes sind:

Beispiel für Ergebnisse als Elemente der Ergebnismenge ist:

Rolle in der Modellierung

Ergebnisse sind die kleinsten Einheiten in der Definition eines stochastischen Modells. Ihnen wird noch keine Wahrscheinlichkeit zugewiesen, sondern sie werden zur Ergebnismenge zusammengefasst.

Auf der Ergebnismenge definiert man nun die Mengen, denen eine Wahrscheinlichkeit zugeordnet werden soll, die Ereignisse. Diese wiederum werden im Ereignissystem, einer σ-Algebra, gesammelt.

Das Ereignissystem bildet das Pendant zur Definitionsmenge der Analysis. Nur den Elementen des Ereignissystems kann eine Wahrscheinlichkeit zugeordnet werden.

Ein Tripel aus Ergebnismenge  \Omega , Ereignissystem  \Sigma und Wahrscheinlichkeitsmaß P wird auch ein Wahrscheinlichkeitsraum genannt und bildet die Grundlage für weitere Untersuchungen.

Ergebnisse und Ereignisse

Ergebnisse und Ereignisse sind leicht zu verwechseln.

Elementarereignisse

Der Begriff des Elementarereignisses wird in der Literatur nicht eindeutig verwendet. Er bezeichnet teils ein Ergebnis \omega , dann ist der Name „Ereignis“ irreführend, da Ergebnisse und Ereignisse unterschiedlich sind. Teils bezeichnet er auch bei diskreter Ergebnismenge ein Ereignis mit einem Element, also von der Form \{\omega \}.

Begriff

Die Bezeichnung „Elementarereignis“ für die Elemente des Wahrscheinlichkeitsraumes geht auf Kolmogorow zurück; dieser unterschied zwar auch zwischen den Elementen der Ergebnismenge und ihren einelementigen Teilmengen, führte für Letztere aber keine eigene Bezeichnung ein. Neuere Literatur verwendet im Unterschied dazu eher die Bezeichnungen „Ergebnis“ oder „Ausgang“. „Ereignis“ wird anschaulich aufgefasst als Menge, die aus Ergebnissen besteht.

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 10.02. 2019