Halbkörper

In der Algebra, speziell der Ringtheorie bezeichnet ein Halbkörper die Spezialisierung eines Halbringes, in der die Multiplikation nicht nur eine Halbgruppe, sondern eine Gruppe bildet. Hat die Addition ein ausgewiesenes 0-Element, wird nur gefordert, dass sich die multiplikative Gruppe über die von der 0 verschiedenen Elemente erstreckt.

Beispiele

Die Menge der positiven Brüche \mathbb{Q}_+ zusammen mit der üblichen Addition und Multiplikation bildet einen Halbkörper:

Durch Hinzufügen der null und der negativen rationalen Zahlen lassen sich die positiven Brüche zu einem Körper erweitern.

Ein weiteres Beispiel für einen Halbkörper sind die ganzen Zahlen mit der Minimum-Operation (oder Maximum-Operation) als Addition, und der Addition ganzer Zahlen als Multiplikation. Denn die Distributivität ist via \min(a,b)+c = \min(a+c,b+c) und c+\min(a,b)=\min(c+a,c+b) erfüllt.

Verwandte Strukturen

Analog zu den ringartigen Strukturen Ring, Fastring, Halbring, gibt es die entsprechenden körperartigen Strukturen Schiefkörper, Fastkörper und Halbkörper. In ihnen muss nur jeweils die Multiplikation eine Gruppe (statt nur einer Halbgruppe) auf den von 0 verschiedenen Elementen bilden. Für den analogen Übergang Ring nach Körper, wo die Multiplikation auch noch kommutativ gefordert wird, gibt es keine speziellen analogen Begriffe, stattdessen sagt man einfach multiplikativ kommutativer Fastkörper/Halbkörper.

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 23.10. 2019