Liénard-Wiechert-Potential
Die Liénard-Wiechert-Potentiale (Emil Wiechert führte unabhängig von Alfred-Marie Liénard (1898) in einem Aufsatz 1900 die nach beiden benannten Liénard-Wiechert-Potentiale einer bewegten Ladung ein) beschreiben die elektrischen und magnetischen Felder, die von einer bewegten elektrischen Punktladung erzeugt werden. Sie verallgemeinern das Coulomb-Potential, das von einer ruhenden Punktladung erzeugt wird und keinen magnetischen Anteil hat, und stellen eine Näherung an das Potential dar, welches sich durch den Doppler-Effekt bei hohen Energien einstellen würde.
Das skalare Liénard-Wiechert-Potential ist ein modifiziertes Coulomb-Potential. Das Vektorpotential, das die Information über das Magnetfeld enthält, ist im Wesentlichen das skalare Potential multipliziert mit der Teilchengeschwindigkeit.
Gegenüber dem Coulomb-Potential bestehen folgende Unterschiede:
- Die Felder, die man zum Zeitpunkt
beobachtet, werden von dem Teilchen zu einem zurückliegenden (retardierten) Zeitpunkt
erzeugt. Die Differenz
ist gleich der Laufzeit vom Teilchen zum Beobachter mit Lichtgeschwindigkeit.
- Es gibt einen Verstärkungsfaktor, wenn sich das Teilchen auf den Beobachter zubewegt (Abschwächungsfaktor, wenn es sich wegbewegt). Der Verstärkungsfaktor geht gegen unendlich, wenn die Teilchengeschwindigkeit gegen die Lichtgeschwindigkeit geht.
Aus den Potentialen können die elektrische und magnetische Feldstärke durch Ableitungen nach Raum- und Zeitkoordinaten gewonnen werden (siehe auch Potentiale und Wellengleichung der Elektrodynamik). Die Feldstärken zerfallen in einen Geschwindigkeits- und einen Beschleunigungsanteil. Der Anteil, der nur die Teilchengeschwindigkeit enthält, ist in der Nähe des Teilchens stark, in großem Abstand dagegen schwach (kein Fernfeld). Der zur Beschleunigung proportionale Anteil führt zur Abstrahlung von Energie ins Unendliche.>
Die Formeln
Der Ort des Teilchens wird als vorgegebene Funktion
betrachtet. Wie die Bahnkurve zustande kommt (etwa durch elektromagnetische
Felder, die Kräfte auf das Teilchen ausüben) wird nicht in Betracht gezogen. Die
Geschwindigkeit des Teilchens wird über die zeitliche Ableitung der Funktion
berechnet. Eine im Folgenden praktische Größe ist diese Geschwindigkeit geteilt
durch die Lichtgeschwindigkeit:
Im Internationalen Einheitensystem lauten die Liénard-Wiechert-Potentiale damit (nach Nolting, jedoch für Felder im materiefreien Raum formuliert)
Der Index „ret“ bedeutet, dass Teilchenposition und -geschwindigkeit zum retardierten Zeitpunkt zu nehmen sind. Für den retardierten Zeitpunkt gilt die implizite Gleichung
Abgesehen vom Spezialfall gleichförmiger Bewegung ist die Auflösung nach
oft nur näherungsweise möglich.
Der Vektor
ist der Einheitsvektor, der vom Ort des Teilchens zum Ortsvektor
zeigt. Es gilt also:
Anwendungen
Synchrotronstrahlung
Hierbei bewegt sich das Teilchen auf einer Kreisbahn mit einer
Geschwindigkeit
nahe der Lichtgeschwindigkeit
.
Der geschwindigkeitsabhängige Faktor nimmt dann bei jedem Umlauf einen hohen
Spitzenwert an. Denn wenn die tangentiale Richtung der Geschwindigkeit mit der
Richtung zum Beobachter übereinstimmt, d.h. wenn
parallel zu
ist, dann gilt mit
wobei
den Lorentzfaktor bezeichnet.
Die Potentiale und Feldstärken sind damit proportional zu
.
Weil die Feldstärken quadratisch in die Strahlungsenergie eingehen (siehe Poynting-Vektor) wird
die Energie der Synchrotronstrahlung
proportional zu
.
Beschleunigtes Teilchen mit niedriger Geschwindigkeit in großer Entfernung
Niedrige Geschwindigkeit hat man zum Beispiel am Beginn eines
Beschleunigungsvorganges. Große Entfernungen sind der Bereich, der für
elektromagnetische Strahlung relevant ist. Mit dieser Spezialisierung
vereinfachen sich die Ausdrücke für die elektrische und magnetische Feldstärke
(siehe Nolting
im Limes ).
Für das Magnetfeld gilt
Die elektrische Feldstärke folgt daraus mit einer allgemeinen Relation für Felder in der Fernzone
Damit ist die ins Unendliche gehende Energiestromdichte (Poynting-Vektor) im
Abstand
betragsmäßig gleich
wobei
der Winkel zwischen dem Beschleunigungsvektor und der Beobachtungsrichtung ist.
Den Energiestrom pro Raumwinkel erhält man durch Weglassen des
im Nenner.
Herleitung des B-Feldes: Die Teilchengeschwindigkeit soll klein gegenüber der
Lichtgeschwindigkeit sein, so dass alle Terme vernachlässigt werden können, die
im Ergebnis einen Faktor
enthalten. Wenn Ableitungen nach
auf die retardierte Zeit wirken, braucht deswegen der Teilchenort nicht
mitdifferenziert zu werden. Damit gilt näherungsweise
Bei Ableitungen des Vektorpotentials darf der Faktor
nicht stehenbleiben; also muss überhaupt nur dieser Faktor differenziert werden.
Für das Magnetfeld erhält man so
wobei eine Kettenregel
für die Rotation benutzt wurde. Außerdem wurde
benutzt.
Literatur
- Wolfgang Nolting, Grundkurs Theoretische Physik, Band 3 Elektrodynamik, 8. Auflage, Springer 2007, Abschnitt 4.5.5
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 08.03. 2022