Jacobi-Polynom
Die Jacobi-Polynome (nach Carl Gustav Jacob Jacobi),
auch hypergeometrische Polynome, sind eine Menge polynomieller Lösungen des Sturm-Liouville-Problems, die einen Satz orthogonaler Polynome bilden,
und zwar auf dem Intervall
bezüglich der Gewichtsfunktion
mit
.
Sie haben die explizite Form
oder mit Hilfe der verallgemeinerten hypergeometrischen Funktion
:
Rodrigues-Formel
Rekursionsformeln
Man kann die Jacobi-Polynome auch mit Hilfe einer Rekursionsformel bestimmen.
mit den Konstanten:
Eigenschaften
Der Wert für ist
.
Es gilt die folgende Symmetriebeziehung
woraus sich der Wert für
ergibt:
Sie erfüllen die Orthogonalitätsbedingung
Ableitungen
Aus der expliziten Form können die
-ten
Ableitungen abgelesen werden. Sie ergeben sich als:
Nullstellen
Die Eigenwerte der symmetrischen Tridiagonalmatrix
mit
stimmen mit den Nullstellen von
überein. Somit bietet der QR-Algorithmus die Möglichkeit, die Nullstellen näherungsweise zu berechnen.
Weiterhin kann man beweisen, dass sie einfach sind und im Intervall
liegen.
Asymptotische Darstellung
Mit Hilfe der Landau-Symbole lässt sich folgende Formel aufstellen:
Erzeugende Funktion
Für alle gilt
Die Funktion
wird daher als erzeugende Funktion der Jacobi-Polynome bezeichnet.
Spezialfälle
Einige wichtige Polynome können als Spezialfälle der Jacobi-Polynome betrachtet werden:
- für
: Legendre-Polynome
- Gegenbauer-Polynome
- Tschebyschow-Polynome erster und zweiter Ordnung
- der Radialterm der Zernike-Polynome
Literatur
- Eric W. Weisstein:
Jacobi Polynomial. In: MathWorld (englisch).
- Sherwin Karniadakis: Spectral/hp Element Methods for CFD. 1. Auflage. Oxford University Press, New York 1999, ISBN 0-19-510226-6.
- I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series, and Products. 5. Auflage. Academic Press Inc., Boston, San Diego, New York, London, Sydney, Tokyo, Toronto 1994, ISBN 0-12-294755-X.
- Peter Junghanns: EAGLE-GUIDE Orthogonale Polynome. 1. Auflage. Books on Demand, Leipzig 2009, ISBN 3-937219-28-5.
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.01. 2024