Flavin-Adenin-Dinukleotid

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze

Flavin-Adenin-Dinukleotid, abgekürzt FAD ist ein Coenzym. Es hat eine wichtige Bedeutung als Elektronenüberträger in verschiedenen prokaryotischen und eukaryotischen Stoffwechselprozessen, wie der oxidativen Phosphorylierung[1], der β-Oxidation von Fettsäuren, der Atmungskette und anderen Redoxreaktionen.[2] FAD kann im Gegensatz zum NAD+ einzelne Elektronen übertragen.[2] Oxidoreduktasen können somit mittels FAD molekularen Sauerstoff aktivieren.[3]

Struktur und chemische Eigenschaften

Strukturformel
Strukturformel von FAD
Allgemeines
Name Flavin-Adenin-Dinukleotid
Andere Namen DISODIUM FLAVINE ADENINE DINUCLEOTIDE (INCI)
Summenformel C27H33N9O15P2
Kurzbeschreibung gelber Feststoff
Externe Identifikatoren/Datenbanken
CAS-Nummer Extern 146-14-5
EG-Nummer 205-663-1
ECHA-InfoCard Extern 100.005.149
PubChem Extern 643975
ChemSpider Extern 559059
DrugBank Extern DB03147
Eigenschaften
Molare Masse 785,55 g/mol
Aggregatzustand fest
Löslichkeit löslich in Wasser

FAD besteht aus Adenosindiphosphat, das mit Riboflavin (Vitamin B2) verknüpft ist. Alternativ könnte man auch sagen, es bestehe aus Adenosin-Monophosphat (AMP), an welchem Flavinmononukleotid (FMN) gebunden ist. Die „reaktiven“ Stickstoffatome befinden sich im Isoalloxazinring des Moleküls.

Das oxidierte FAD geht durch Aufnahme zweier Protonen (H+) und zweier Elektronen (e) in die reduzierte Form FADH2 über: Man bezeichnet dies als einen ECEC-Mechanismus (e für elektrochemischer Schritt, c für chemischer Schritt der Protonierung), wobei die zweite Protonierung nur in ausreichend saurer Lösung erfolgt. Der Übergang zwischen dem ECE-Mechanismus ohne abschließende Übertragung eines Protons und des ECEC-Mechanismus ist außerdem noch von der chemischen Umgebung abhängig: Für freies FAD in Lösung überlappen ECE- und ECEC-Mechanismus bei pH 6,7[4], auf Oberflächen immobilisiertes FAD wird erst bei etwa pH 9 nach dem ECE-Mechanismus reduziert.[5]

Das Redoxpotential des FAD liegt unter Standardbedingungen bei −219 mV vs. NHE.[4]

FAD-FADH2-Gleichgewicht
FAD-FADH2-Gleichgewicht

Eine Lösung von Flavin-Adenin-Dinukleotid in Wasser (10 g/l) besitzt einen pH-Wert von etwa 6.

Enzyme, die FAD verwenden>

Zu den Enzymen, die FAD verwenden, gehören die:

Siehe auch

Einzelnachweise

  1. U. Dettmer, M. Folkerts, E. Kächler, A. Sönnichsen: Intensivkurs Biochemie, 1. Auflage, Elsevier Verlag, München 2005, ISBN 3-437-44450-6, S. 10
  2. Hochspringen nach: a b K. Aktories, U. Förstermann, F. B. Hofmann, K. Starke: Allgemeine und Spezielle Pharmakologie und Toxikologie: Begründet von W. Forth, D. Henschler, W. Rummel, 10. Auflage, Elsevier Verlag, München, ISBN 3-437-42522-6, S. 762.
  3. H. Renz: Integrative Klinische Chemie und Laboratoriumsmedizin. Pathophysiologie – Pathobiochemie – Hämatalogie, 1. Auflage, de Gruyter Verlag, Berlin 2003, ISBN 3-11-017367-0, S. 616.
  4. Hochspringen nach: a b Müller, F.; Chemistry and Biochemistry of Flavoenzymes, 1991, Vol. 1, CRC Press London.
  5. Nöll et al., In: Langmuir B, 2006, 22, S. 2378–2383.
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 03.04. 2024